CAREER: Toward A Machine Learning Framework for the Internet of Things
职业:构建物联网机器学习框架
基本信息
- 批准号:1553340
- 负责人:
- 金额:$ 61.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop a new paradigm and tools for machine learning that can cope with the massive-scale, geographically distributed data in the Internet of Things. The key innovation is to use devices and computing power within the Internet of Things network itself to perform data analysis in a scalable, reliable fashion.The Internet of Things describes a network of devices, from RFID tags, to smart thermostats, to light bulbs, that can sense and communicate information. It is predicted that by 2020, there will be 25 to 50 billion devices in the Internet of Things. This massive network and the data it generates will enable new applications in a wide range of critical domains including environmental management, smart infrastructure, and healthcare. To achieve this vision, it is crucial to be able to quickly analyze and learn from the massive amount of generated data. Current approaches for big data analytics require full data transfer to a platform with large computational power, such as the cloud. Given the projected explosion in the number of devices and the resulting data generation rate, this is not feasible. The proposed research integrates tools and theory from machine learning, distributed computing, and networked systems in three main thrusts that include; a computational framework that provides an abstraction for algorithm design and implementation that is flexible enough to support a wide collection of machine learning methods, a framework implementation that provides a stable platform for algorithm developers by masking device heterogeneity, devices failures, and the network dynamics of the Internet of Things, and development and implementation of techniques to adapt the network and computation to support algorithm execution with performance guarantees.The framework developed in this project will facilitate rapid development and deployment of Internet of Things applications. A significant contribution will be an open source software implementation of the framework allowing others with limited network expertise to develop their own applications for the Internet of Things. The project also includes robust educational and outreach components including graduate and undergraduate research, curriculum development, and activities to promote and support the participation of women in computer science.
该项目将开发一种新的机器学习范式和工具,能够应对物联网中大规模、地理分布的数据。关键的创新是利用物联网网络本身的设备和计算能力以可扩展、可靠的方式执行数据分析。物联网描述了一个可以感知和传达信息的设备网络,从 RFID 标签到智能恒温器,再到灯泡。预计到2020年,物联网设备数量将达到25至500亿台。这个庞大的网络及其生成的数据将为环境管理、智能基础设施和医疗保健等广泛关键领域的新应用提供支持。为了实现这一愿景,能够快速分析大量生成的数据并从中学习至关重要。 当前的大数据分析方法需要将数据全部传输到具有强大计算能力的平台,例如云。考虑到预计设备数量的爆炸性增长以及由此产生的数据生成率,这是不可行的。 拟议的研究整合了机器学习、分布式计算和网络系统的工具和理论,主要包括以下三个方面:一个计算框架,为算法设计和实现提供抽象,足够灵活,支持广泛的机器学习方法;一个框架实现,通过屏蔽设备异构性、设备故障和物联网的网络动态,为算法开发人员提供稳定的平台;开发和实现适应网络和计算以支持算法执行并保证性能的技术。该框架开发 该项目将促进物联网应用的快速开发和部署。一个重大贡献将是该框架的开源软件实现,允许网络专业知识有限的其他人开发自己的物联网应用程序。该项目还包括强大的教育和外展部分,包括研究生和本科生研究、课程开发以及促进和支持女性参与计算机科学的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacy Patterson其他文献
Formal verification of timely knowledge propagation in airborne networks
- DOI:
10.1016/j.scico.2024.103184 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Saswata Paul;Chris McCarthy;Stacy Patterson;Carlos Varela - 通讯作者:
Carlos Varela
Biharmonic distance-based performance metric for second-order noisy consensus networks
二阶噪声共识网络的基于双调和距离的性能指标
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
Yuhao Yi;Bingjia Yang;Zuobai Zhang;Zhongzhi Zhang;Stacy Patterson - 通讯作者:
Stacy Patterson
Stacy Patterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stacy Patterson', 18)}}的其他基金
CSR: Small: Virtual Sky: Morphable Geo-Spatial Computing for the Internet of Planes
CSR:小型:虚拟天空:飞机互联网的可变形地理空间计算
- 批准号:
1816307 - 财政年份:2018
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
CSR: III: Small: Collaborative Research: A Hybrid Vehicle-Cloud Solution for Robust, Cost-Efficient Road Monitoring
CSR:III:小型:协作研究:用于稳健、经济高效的道路监控的混合车辆云解决方案
- 批准号:
1527287 - 财政年份:2015
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
相似海外基金
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 61.87万 - 项目类别:
Fellowship
Thermal recognition and control system using self-heating toward human-machine cooperation
利用自加热实现人机协作的热识别和控制系统
- 批准号:
23K13303 - 财政年份:2023
- 资助金额:
$ 61.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Beyond Standard Numerical Relativistic Hydrodynamics in Binary Neutron Stars: Cooperation of Machine Learning Toward Era of Gravitational Waves Astronomy and Exascale Supercomputers
双中子星中超越标准数值相对论流体动力学:机器学习在引力波时代的合作天文学和百亿亿次超级计算机
- 批准号:
23K03399 - 财政年份:2023
- 资助金额:
$ 61.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
Toward ultrasound brain imaging via machine-learning-extracted skull profile and speed of sound
通过机器学习提取的头骨轮廓和声速进行超声脑成像
- 批准号:
10819920 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Toward Machine Competence: Combining Demonstration-based and Experience-based Machine Learning
迈向机器能力:结合基于演示和基于经验的机器学习
- 批准号:
RGPIN-2018-04674 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Discovery Grants Program - Individual
Toward ultrasound brain imaging via machine-learning-extracted skull profile and speed of sound
通过机器学习提取的头骨轮廓和声速进行超声脑成像
- 批准号:
10354529 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Toward an Integrative Approach to Machine Learning for Traffic Management
交通管理机器学习的综合方法
- 批准号:
2225087 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
Planning: Toward OpenHMI, A Community-Designed Infrastructure for Human-Machine Interaction Research
规划:面向 OpenHMI,社区设计的人机交互研究基础设施
- 批准号:
2233191 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant
FMSG: Cyber: Resilient and Reliable Cyber-Physical-Human-Machine Teams: Toward Future of Cybermanufacturing
FMSG:网络:有弹性且可靠的网络物理人机团队:迈向网络制造的未来
- 批准号:
2134367 - 财政年份:2022
- 资助金额:
$ 61.87万 - 项目类别:
Standard Grant














{{item.name}}会员




