CAREER: Mining Reliable Information from Crowdsourced Data

职业:从众包数据中挖掘可靠信息

基本信息

  • 批准号:
    1553411
  • 负责人:
  • 金额:
    $ 50.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

With the proliferation of mobile devices and social media platforms, any person can publicize observations about any activity, event or object anywhere and at any time. The confluence of these enormous crowdsourced data can contribute to an inexpensive, sustainable and large-scale decision system that has never been possible before. Such a system could vastly improve the efficiency and cost of transportation, healthcare, and many other applications. The main obstacle in building such a system lies in the problem of information veracity, i.e., individual users might provide unreliable or even misleading information. This project identifies important research questions in the task of mining reliable information from noisy and unreliable crowdsourced data, and pursues an integrated research and education plan to address these questions. Through integrating data from various sources, this project addresses information veracity, which will benefit the many applications where crowdsourced data are ubiquitous but veracity can be suspect.In particular, this project develops novel methods to mine reliable information by taking into consideration various properties of crowdsourcing: 1) Crowdsourcing platforms collect users' observations about certain objects. Other valuable information sources, such as spatial-temporal, user influence, and textual data, are leveraged to effectively detect reliable information from these observations. 2) Effective privacy protection and budget allocation mechanisms are designed to better motivate active crowdsourcing. These investigations are integrated with the exploration of both theoretical and practical aspects of the proposed methods. From the theoretical perspective, fundamental questions regarding the confidence in the estimated reliability and the convergence of the proposed methods are explored. From the practical perspective, the proposed methods are adapted to tackle challenging problems in various applications such as transportation, healthcare and education to enable new insights into these domains. In addition to the research advances, this project contributes to educational innovation, as the proposed methods are applied to educational methodologies such as peer assessment and question answering. Additional information about this project, including research results, publications, datasets, and software, can be found at http://www.cse.buffalo.edu/~jing/crowd.htm
随着移动的设备和社交媒体平台的普及,任何人都可以随时随地公布对任何活动、事件或物体的观察。这些庞大的众包数据的融合可以促成一个廉价、可持续和大规模的决策系统,这在以前是不可能的。这样的系统可以大大提高运输,医疗保健和许多其他应用的效率和成本。 建立这样一个系统的主要障碍在于信息的准确性问题,即,个别用户可能提供不可靠或甚至误导性的信息。 该项目确定了从嘈杂和不可靠的众包数据中挖掘可靠信息的任务中的重要研究问题,并寻求综合研究和教育计划来解决这些问题。 通过整合来自不同来源的数据,该项目解决了信息的准确性问题,这将有益于众包数据无处不在但准确性可能受到怀疑的许多应用。特别是,该项目考虑到众包的各种特性,开发了挖掘可靠信息的新方法:1)众包平台收集用户对某些对象的观察。其他有价值的信息源,如时空,用户的影响,和文本数据,被利用来有效地从这些观察检测可靠的信息。2)有效的隐私保护和预算分配机制旨在更好地激励积极的众包。这些调查与所提出的方法的理论和实践方面的探索相结合。从理论的角度来看,基本问题的置信度估计的可靠性和所提出的方法的收敛性进行了探讨。从实践的角度来看,所提出的方法适用于解决各种应用中的挑战性问题,如交通,医疗保健和教育,以实现对这些领域的新见解。 除了研究进展外,该项目还有助于教育创新,因为所提出的方法适用于教育方法,如同行评估和问答。 有关该项目的其他信息,包括研究结果、出版物、数据集和软件,可以在http://www.cse.buffalo.edu/~jing/crowd.htm上找到。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Gao其他文献

Microwave assisted in situ synthesis of USY-encapsulated heteropoly acid (HPW-USY) catalysts
微波辅助原位合成USY包封杂多酸(HPW-USY)催化剂
  • DOI:
    10.1016/j.apcata.2008.10.020
  • 发表时间:
    2009-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jing Gao;Xiaoming Zheng;Zhaoyin Hou;Xiuyang Lu;Dingfeng Jin;Yan Guo;Yinghong Zhu
  • 通讯作者:
    Yinghong Zhu
Multi-dimensional wind power prediction based on time-series characterization analysis and VMD-EMD quadratic decomposition
基于时间序列表征分析和VMD-EMD二次分解的多维风电功率预测
Can LLMs like GPT-4 outperform traditional AI tools in dementia diagnosis? Maybe, but not today
像 GPT-4 这样的法学硕士在痴呆症诊断方面能否超越传统的人工智能工具?
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Wang;R. Li;Bowen Dong;Jie Wang;Xiuxing Li;Ning Liu;C. Mao;Wei Zhang;L. Dong;Jing Gao;Jianyong Wang
  • 通讯作者:
    Jianyong Wang
Green production of diosgenin from Discorea nipponica Makino tubers based on pressurized biphase acid hydrolysis via response surface methodology optimization
基于加压双相酸水解响应面法优化从盘根薯蓣块茎中绿色生产薯蓣皂苷元
  • DOI:
    10.1080/17518253.2019.1579370
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Changjie Yu;Zihao Li;Huawu Yin;Guohua Xia;Yuping Shen;Huan Yang;Jing Gao;Xiaobin Jia
  • 通讯作者:
    Xiaobin Jia
Grooved pegboard test performance before and after cerebral-spinal fluid tap test in patients with normal pressure hydrocephalus
常压脑积水患者脑脊液抽液试验前后凹槽板试验表现
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caiyan Liu;L. Dong;C. Mao;Jie Li;Xinying Huang;Junji Wei;B. Hou;F. Feng;L. Cui;Jing Gao
  • 通讯作者:
    Jing Gao

Jing Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Gao', 18)}}的其他基金

Proto-OKN Theme 1: A Knowledge Graph Warehouse for Neighborhood Information
Proto-OKN 主题 1:社区信息知识图仓库
  • 批准号:
    2333790
  • 财政年份:
    2023
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Cooperative Agreement
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
  • 批准号:
    2239859
  • 财政年份:
    2023
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Continuing Grant
Sustainable Agricultural Land Use Practices in Large-scale Landscape Evolution
大规模景观演变中的可持续农业土地利用实践
  • 批准号:
    2117722
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
CAREER: Mining Reliable Information from Crowdsourced Data
职业:从众包数据中挖掘可靠信息
  • 批准号:
    2226108
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
  • 批准号:
    2141037
  • 财政年份:
    2021
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
  • 批准号:
    1956017
  • 财政年份:
    2020
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative: Understanding and Modeling Rumor Propagation for Vulnerability Assessment of Social Media Platforms
EAGER:协作:理解和建模谣言传播以进行社交媒体平台的漏洞评估
  • 批准号:
    1742845
  • 财政年份:
    2017
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Conflicts to Harmony: Integrating Massive Data by Trustworthiness Estimation and Truth Discovery
三:小:协同研究:从冲突到和谐:通过可信度估计和真相发现整合海量数据
  • 批准号:
    1319973
  • 财政年份:
    2013
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Continuing Grant
III: Small: Dynamic Social Network Mining: Feature Extraction, Modeling and Anomaly Detection
III:小:动态社交网络挖掘:特征提取、建模和异常检测
  • 批准号:
    1218393
  • 财政年份:
    2012
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
  • 批准号:
    21242003
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ART: Mining the Rich Vein of Research in Montana
艺术:挖掘蒙大拿州研究的丰富脉络
  • 批准号:
    2331325
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Cooperative Agreement
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Research Grant
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
  • 批准号:
    2307870
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
  • 批准号:
    IM240100202
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Mid-Career Industry Fellowships
Novel Hydrophobic Concrete for Durable and Resilient Mining Infrastructure
用于耐用且有弹性的采矿基础设施的新型疏水混凝土
  • 批准号:
    LP230100288
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Linkage Projects
SBIR Phase I: Electromagnetic-ablative PGM Refining for In-situ Asteroid Mining
SBIR 第一阶段:用于小行星原位采矿的电磁烧蚀铂族金属精炼
  • 批准号:
    2327078
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Standard Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
  • 批准号:
    DP240101547
  • 财政年份:
    2024
  • 资助金额:
    $ 50.06万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了