III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
基本信息
- 批准号:2141037
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knowledge repository refers to a machine-readable structure that stores knowledge about various entities (e.g., organizations, events, genes), which facilitates efficient information seeking. In many domains, knowledge varies with respect to contexts, and a flat structure that is commonly adopted by existing knowledge repositories cannot capture the complicated knowledge associated with different contexts. To make knowledge resources more findable, accessible, interoperable, and reusable (FAIR), this project plans to conceptualize a new structure, Knowledge Hypercube, for organizing and retrieving knowledge that could support complex applications in various domains. A knowledge hybercube organizes knowledge with respect to selected important dimensions (e.g., time, locations, conditions), and thus it allows people to easily access knowledge in any context, encapsulate distinctive entities and facts, and conduct cross-dimensional comparison and inference. This project impacts how people find and use knowledge, advances knowledge-based data analytics approaches, and benefits a wide range of domains which have gigantic literature and unsolved complex tasks by building a bridge between them. Knowledge hypercubes can also support educational innovation and contributes to educational tasks such as knowledge tracing. The major objective of this proposal is to form a paradigm of mining knowledge hybercubes from massive collection of text documents and leveraging such hybercubes for complex exploration and prediction tasks. To meet this goal, this project tackles a series of technical challenges. First, to automatically construct a knowledge hypercube from massive texts, innovative weakly supervised approaches are designed to organize text documents based on the hypercube structure, extract open entity and relationship information and organize cell-specific and cross-cell knowledge in a multi-dimensional manner. Second, novel refinement approaches are developed to automatically verify the information quality within and across cells in knowledge hypercubes by cross-checking within the hypercubes and with external information. Third, knowledge hypercubes motivate the development towards new discovery and learning tasks. In particular, the project introduces an automatic knowledge search pipeline for leveraging knowledge hypercubes for downstream prediction tasks, and a hypothesis generation approach for scoring unknown associations between concepts. The planned paradigm is realized in two specific domains (i.e., biomedical and news events), demonstrating the power of knowledge hypercubes to enable new insights into these domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
知识存储库是指存储有关各种实体的知识的机器可读结构(例如,组织、事件、基因),这有助于有效的信息搜索。 在许多领域中,知识随着上下文而变化,现有知识库通常采用的扁平结构无法捕获与不同上下文相关联的复杂知识。 为了使知识资源更加可查找、可访问、可互操作和可重用(FAIR),该项目计划概念化一种新结构Knowledge Hypercube,用于组织和检索可以支持各个领域复杂应用程序的知识。 知识超立方体相对于所选择的重要维度(例如,时间、地点、条件),因此它允许人们在任何上下文中轻松访问知识,封装独特的实体和事实,并进行跨维度的比较和推理。 该项目影响人们如何查找和使用知识,推进基于知识的数据分析方法,并通过在它们之间建立桥梁,使具有庞大文献和未解决的复杂任务的广泛领域受益。知识超立方体还可以支持教育创新,并有助于知识追踪等教育任务。该建议的主要目标是形成一个从大量文本文档集合中挖掘知识超立方体的范例,并利用这种超立方体进行复杂的探索和预测任务。为了实现这一目标,该项目解决了一系列技术挑战。首先,为了从海量文本中自动构建知识超立方体,提出了基于超立方体结构的弱监督文本组织方法,提取开放的实体和关系信息,并以多维方式组织单元知识和跨单元知识。 第二,新的细化方法,开发自动验证内和跨细胞的知识超立方体内的交叉检查和外部信息的信息质量。 第三,知识超立方体激励开发新的发现和学习任务。特别是,该项目引入了一个自动知识搜索管道,用于利用知识超立方体进行下游预测任务,以及一种假设生成方法,用于对概念之间的未知关联进行评分。 计划的范例在两个特定领域中实现(即,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
- DOI:10.48550/arxiv.2210.17451
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yaqing Wang;Subhabrata Mukherjee;Xiaodong Liu;Jing Gao;Jianfeng Gao
- 通讯作者:Yaqing Wang;Subhabrata Mukherjee;Xiaodong Liu;Jing Gao;Jianfeng Gao
LightToken: a Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models
LightToken:用于预训练语言模型的任务和模型无关的轻量级令牌嵌入框架
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Wang, Haoyu;Li, Ruirui;Jiang, Haoming;Wang, Zhengyang;Tang, Xianfeng;Bi, Bin;Cheng, Monica;Yin, Bing;Wang, Yaqing;Zhao, Tuo
- 通讯作者:Zhao, Tuo
InterHG: an Interpretable and Accurate Model for Hypothesis Generation
InterHG:可解释且准确的假设生成模型
- DOI:10.1109/bibm52615.2021.9669740
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wang, Haoyu;Wang, Xuan;Wang, Yaqing;Xun, Guangxu;Jha, Kishlay;Gao, Jing
- 通讯作者:Gao, Jing
Multimodal Emergent Fake News Detection via Meta Neural Process Networks
- DOI:10.1145/3447548.3467153
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Yaqing Wang;Fenglong Ma;Haoyu Wang;Kishlay Jha;Jing Gao
- 通讯作者:Yaqing Wang;Fenglong Ma;Haoyu Wang;Kishlay Jha;Jing Gao
Concept-Level Model Interpretation From the Causal Aspect
- DOI:10.1109/tkde.2022.3209997
- 发表时间:2023-09
- 期刊:
- 影响因子:8.9
- 作者:Liuyi Yao;Yaliang Li;Sheng Li;Jinduo Liu;Mengdi Huai;Aidong Zhang;Jing Gao
- 通讯作者:Liuyi Yao;Yaliang Li;Sheng Li;Jinduo Liu;Mengdi Huai;Aidong Zhang;Jing Gao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Gao其他文献
Microwave assisted in situ synthesis of USY-encapsulated heteropoly acid (HPW-USY) catalysts
微波辅助原位合成USY包封杂多酸(HPW-USY)催化剂
- DOI:
10.1016/j.apcata.2008.10.020 - 发表时间:
2009-01 - 期刊:
- 影响因子:5.5
- 作者:
Jing Gao;Xiaoming Zheng;Zhaoyin Hou;Xiuyang Lu;Dingfeng Jin;Yan Guo;Yinghong Zhu - 通讯作者:
Yinghong Zhu
Multi-dimensional wind power prediction based on time-series characterization analysis and VMD-EMD quadratic decomposition
基于时间序列表征分析和VMD-EMD二次分解的多维风电功率预测
- DOI:
10.1109/peect59566.2023.00018 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhe Zhang;Jing Gao;Yongsheng Wang;ShiJie Guan;Jidong Luo - 通讯作者:
Jidong Luo
Can LLMs like GPT-4 outperform traditional AI tools in dementia diagnosis? Maybe, but not today
像 GPT-4 这样的法学硕士在痴呆症诊断方面能否超越传统的人工智能工具?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuo Wang;R. Li;Bowen Dong;Jie Wang;Xiuxing Li;Ning Liu;C. Mao;Wei Zhang;L. Dong;Jing Gao;Jianyong Wang - 通讯作者:
Jianyong Wang
Green production of diosgenin from Discorea nipponica Makino tubers based on pressurized biphase acid hydrolysis via response surface methodology optimization
基于加压双相酸水解响应面法优化从盘根薯蓣块茎中绿色生产薯蓣皂苷元
- DOI:
10.1080/17518253.2019.1579370 - 发表时间:
2019-01 - 期刊:
- 影响因子:6.6
- 作者:
Changjie Yu;Zihao Li;Huawu Yin;Guohua Xia;Yuping Shen;Huan Yang;Jing Gao;Xiaobin Jia - 通讯作者:
Xiaobin Jia
Grooved pegboard test performance before and after cerebral-spinal fluid tap test in patients with normal pressure hydrocephalus
常压脑积水患者脑脊液抽液试验前后凹槽板试验表现
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Caiyan Liu;L. Dong;C. Mao;Jie Li;Xinying Huang;Junji Wei;B. Hou;F. Feng;L. Cui;Jing Gao - 通讯作者:
Jing Gao
Jing Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Gao', 18)}}的其他基金
Proto-OKN Theme 1: A Knowledge Graph Warehouse for Neighborhood Information
Proto-OKN 主题 1:社区信息知识图仓库
- 批准号:
2333790 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cooperative Agreement
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
- 批准号:
2239859 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Sustainable Agricultural Land Use Practices in Large-scale Landscape Evolution
大规模景观演变中的可持续农业土地利用实践
- 批准号:
2117722 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Mining Reliable Information from Crowdsourced Data
职业:从众包数据中挖掘可靠信息
- 批准号:
2226108 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
- 批准号:
1956017 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
EAGER: Collaborative: Understanding and Modeling Rumor Propagation for Vulnerability Assessment of Social Media Platforms
EAGER:协作:理解和建模谣言传播以进行社交媒体平台的漏洞评估
- 批准号:
1742845 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Mining Reliable Information from Crowdsourced Data
职业:从众包数据中挖掘可靠信息
- 批准号:
1553411 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Conflicts to Harmony: Integrating Massive Data by Trustworthiness Estimation and Truth Discovery
三:小:协同研究:从冲突到和谐:通过可信度估计和真相发现整合海量数据
- 批准号:
1319973 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
III: Small: Dynamic Social Network Mining: Feature Extraction, Modeling and Anomaly Detection
III:小:动态社交网络挖掘:特征提取、建模和异常检测
- 批准号:
1218393 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant