CAREER: Stretchability by Design - Understanding Mechanical Phenomena in Microarchitectured Soft Material Systems
职业:设计可拉伸性 - 了解微结构软材料系统中的机械现象
基本信息
- 批准号:1553638
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) program will investigate mechanical phenomena in microarchitectured soft materials such as conjugated polymers to achieve stretchability by design and thereby stable device performance under large stresses. Conjugated polymers are considered as the basic material for organic semiconductors, which are used for various electronic material systems and sensing devices for applications in energy, healthcare, biomedical, civil, mechanical, aerospace, and chemical engineering. However, conjugated polymers are not stretchable. While generally flexible, their stretchability is restricted up to a few percent. At large deformations, cracks can deteriorate electronic device performance. This weakness limits their use in industrial applications that require large stretchability and new applications demanding complete flexibility. Society will benefit from new methods to predict material properties via mechanics-driven simulations for use in flexible hybrid electronics. The award will create science, technology, engineering, and mathematics opportunities for high school to graduate students in microarchitectured material design and macroarchitectured sustainable systems, and will impact on diversity by reducing barriers of first generation college students to pursue an engineering degree.Currently, no theory reliably predicts all the complex interactions and non-equilibrium mechanisms arising during instability-induced phase separation of polymer blends, being a promising technique to increase stretchability in soft material systems. Nor is there a theory to predict failure behavior of the resulting conjugated/amorphous polymer blend material and the large deformation those materials must withstand in flexible hybrid electronics applications. The wide range of length and time scales of those mechanisms results in simulations merely able to capture experimentally observed phenomena in a qualitative way. This project aims to close this gap by an integrated theoretical, computational, and experimental approach. The astonishing advancements of theoretical mechanics, high-performance computational resources, and experimental testing and visualization techniques, make this award particularly timely. This research will contribute to developing computational scale bridging techniques to predict, quantitatively, the effect of varying polymer, solvent, and substrate properties, blend ratios, or evaporation rates on induced instabilities, blend morphologies, nanoconfined polymer properties, and failure mechanisms in polymer blends.
该学院早期职业发展(CAREER)计划将研究微结构软材料(如共轭聚合物)中的机械现象,以通过设计实现可拉伸性,从而在大应力下稳定器件性能。共轭聚合物被认为是有机半导体的基础材料,用于各种电子材料系统和传感器件,用于能源,医疗保健,生物医学,民用,机械,航空航天和化学工程。然而,共轭聚合物是不可拉伸的。虽然通常是柔性的,但它们的拉伸性被限制在百分之几。在大的变形下,裂纹会使电子器件性能恶化。这种弱点限制了它们在需要大拉伸性的工业应用和需要完全柔性的新应用中的使用。社会将受益于新方法,通过机械驱动的模拟来预测材料特性,用于柔性混合电子产品。该奖项将为高中毕业生创造科学,技术,工程和数学的机会,在微结构材料设计和宏观结构可持续系统,并将通过减少第一代大学生追求工程学位的障碍来影响多样性。没有任何理论能可靠地预测所有复杂的相互作用和不稳定过程中产生的非平衡机制-聚合物共混物的诱导相分离,是一种很有前途的技术,以增加在软材料系统的拉伸性。也没有理论来预测所得共轭/无定形聚合物共混物材料的失效行为以及这些材料在柔性混合电子应用中必须承受的大变形。这些机制的长度和时间尺度范围广泛,导致模拟只能以定性的方式捕捉实验观察到的现象。该项目旨在通过综合理论,计算和实验方法来缩小这一差距。理论力学、高性能计算资源、实验测试和可视化技术的惊人进步,使这个奖项特别及时。这项研究将有助于开发计算规模的桥接技术来预测,定量地,不同的聚合物,溶剂和基板的性能,共混比,或诱导的不稳定性,共混物形态,nanobintized聚合物的性能和故障机制的蒸发速率的影响,在聚合物共混物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Linder其他文献
Autumn acaricide applications as a new strategy to control the pear leaf blister mite <em>Eriophyes pyri</em>
- DOI:
10.1016/j.cropro.2006.12.016 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Claudia Daniel;Christian Linder;Eric Wyss - 通讯作者:
Eric Wyss
A unified finite strain gradient-enhanced micropolar continuum approach for modeling quasi-brittle failure of cohesive-frictional materials
- DOI:
10.1016/j.ijsolstr.2022.111841 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:3.800
- 作者:
Matthias Neuner;Richard A. Regueiro;Christian Linder - 通讯作者:
Christian Linder
Exact solutions for functionally graded flexoelectric micro-cylinders
- DOI:
10.1016/j.mechmat.2024.105148 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Jinchen Xie;Christian Linder - 通讯作者:
Christian Linder
Advances in Crest Factor Minimization for Wide-Bandwidth Multi-Sine Signals with Non-Flat Amplitude Spectra
具有非平坦幅度谱的宽带宽多正弦信号波峰因数最小化的进展
- DOI:
10.3390/ioca2021-10908 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
H;Maximilian Eberhardt;Steffen Geinitz;Christian Linder - 通讯作者:
Christian Linder
Estimating parameter space limits for industrial processes with in-distribution data
- DOI:
10.1007/s11740-025-01353-y - 发表时间:
2025-05-26 - 期刊:
- 影响因子:1.600
- 作者:
Sebastian Maier;Christian Linder;Clemens Gonnermann;Rüdiger Daub - 通讯作者:
Rüdiger Daub
Christian Linder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Linder', 18)}}的其他基金
Understanding the Impact of Mechanical Constraints on the Dendrite Formation in Lithium Metal Anodes
了解机械约束对锂金属阳极枝晶形成的影响
- 批准号:
1911836 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Scalable Lamination Printing of Near Atomically Thin Electronic Materials with Mechanical Stretchability
职业:具有机械拉伸性的近原子薄电子材料的可扩展层压印刷
- 批准号:
2142310 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Investigation of the Stretchability of Specific Elastomeric Materials and their Application in Organic Electronics
特定弹性材料的拉伸性及其在有机电子中的应用研究
- 批准号:
519921-2017 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Engage Grants Program
Solution-processed metal films with ultrahigh stretchability
具有超高拉伸性的溶液加工金属薄膜
- 批准号:
496473-2016 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
University Undergraduate Student Research Awards