CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
基本信息
- 批准号:1553954
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2016-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advances have driven modern sensing systems towards generating massive amounts of data, making it increasingly challenging to store, transmit and process such data in a cost effective and reliable manner. However, the ultimate goal in many information-processing tasks is to infer some parameters of interest, that govern the statistical and physical model of the data. This includes applications ranging from source localization in radar and imaging systems to inferring latent variables in machine learning. The number of parameters in such problems is much smaller than the acquired volume of data, which leads to the possibility of more intelligent ways of sensing high dimensional signals, that can exploit the statistical model of the signal (with or without invoking sparsity), and the physics of the problem. The objective of this project is to develop a systematic theory of smart sampling and information retrieval algorithms for modern sensing systems that exploit the correlation structure of high dimensional signals to significantly reduce the number of measurements needed for inference. The proposed research can lead to deployment of fewer sensors (than what is traditionally required), as well as more energy efficient ways to collect and process spatio-temporal data that will positively impact a number of applications across disciplines, such as, high resolution imaging, remote sensing, neural signal processing and wireless communication. The educational component of this project aims at integrating the research outcomes into innovative teaching platforms such as ''Sense Smarter'', and ''Signals Everywhere'' that will help train the next generation of electrical engineers, and encourage them to pursue careers in STEM fields.The technical component of the project has three interconnected goals: (i) designing fundamentally new geometries for correlation-aware samplers that exploit the statistical as well as physical signal models, (ii) developing, and analyzing the performance of new correlation driven algorithms to understand fundamental capabilities of correlation-aware samplers, and (iii) exploiting the ideas behind correlation-aware samplers to develop more efficient algorithms for solving bi- and multi-linear problems. Design of these samplers will provide new theoretical insights into properties of quadratic samplers, and will help address fundamental mathematical questions that can be of independent interest. The samplers also facilitate the development of new inference strategies, and the proposed rigorous theoretical analysis of these algorithms is expected to fundamentally advance our current understanding of the limits of parameter estimation from compressed data. Finally, the ideas behind correlation-aware samplers have strong connections with problems in machine learning such as dictionary learning, and latent variable analysis, and they will foster future research advances in these areas.
技术进步推动了现代传感系统产生海量数据,使得以具有成本效益和可靠的方式存储、传输和处理此类数据变得越来越具有挑战性。然而,许多信息处理任务的最终目标是推断一些感兴趣的参数,这些参数支配着数据的统计和物理模型。这包括从雷达和成像系统中的信号源定位到机器学习中推断潜在变量的各种应用。这类问题中的参数数量比采集的数据量小得多,这导致了更智能的方法来感测高维信号,其可以利用信号的统计模型(具有或不具有稀疏性)以及问题的物理。该项目的目标是为现代传感系统开发一种智能采样和信息检索算法的系统理论,该算法利用高维信号的相关结构来显著减少推断所需的测量数量。拟议的研究可以导致部署更少的传感器(比传统要求的传感器更少),以及更节能的方式来收集和处理时空数据,这将对高分辨率成像、遥感、神经信号处理和无线通信等多个学科的应用产生积极影响。该项目的技术部分有三个相互关联的目标:(I)为利用统计和物理信号模型的相关感知采样器设计全新的几何形状;(Ii)开发和分析新的相关驱动算法的性能,以了解相关感知采样器的基本能力;以及(Iii)利用相关感知采样器背后的思想来开发更高效的算法来解决双线性和多线性问题。这些采样器的设计将为二次采样器的性质提供新的理论见解,并将有助于解决可能独立感兴趣的基本数学问题。采样器还促进了新推理策略的开发,对这些算法提出的严格的理论分析有望从根本上促进我们目前对压缩数据参数估计的局限性的理解。最后,相关感知采样器背后的想法与机器学习中的问题有很强的联系,如词典学习和潜在变量分析,它们将促进这些领域未来的研究进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piya Pal其他文献
Correlation Awareness in Low-Rank Models: Sampling, Algorithms, and Fundamental Limits
- DOI:
10.1109/msp.2018.2827108 - 发表时间:
2018-06 - 期刊:
- 影响因子:14.9
- 作者:
Piya Pal - 通讯作者:
Piya Pal
Effect of Beampattern on Matrix Completion with Sparse Arrays
波束方向图对稀疏阵列矩阵补全的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Robin Rajamaki;Mehmet Can Hucumenouglu;P. Sarangi;Piya Pal - 通讯作者:
Piya Pal
Performance limits of covariance-driven super resolution imaging
协方差驱动的超分辨率成像的性能限制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Heng Qiao;Piya Pal - 通讯作者:
Piya Pal
Channel Estimation for Hybrid MIMO Communication with (Non-) Uniform Linear Arrays via Tensor Decomposition
通过张量分解使用(非)均匀线性阵列进行混合 MIMO 通信的信道估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Koochakzadeh;Piya Pal - 通讯作者:
Piya Pal
Byron and the Politics of Freedom and Terror
拜伦与自由与恐怖的政治
- DOI:
10.1057/9780230306608_1 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Matthew J. A. Green;Piya Pal - 通讯作者:
Piya Pal
Piya Pal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piya Pal', 18)}}的其他基金
Travel Grant Proposal for Signal Processing Advances in Wireless Communications (SPAWC) 2018
2018 年无线通信信号处理进展 (SPAWC) 差旅补助提案
- 批准号:
1829678 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NCS-FO: Super resolution Mapping of Multi-scale Neuronal circuits Using Flexible Transparent Arrays
NCS-FO:使用灵活透明阵列的多尺度神经元电路的超分辨率映射
- 批准号:
1734940 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
- 批准号:
1700506 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control for Large-Scale Wastewater Reuse and Algal Biomass Production
CPS:协同:协作研究:大规模废水回用和藻类生物质生产的网络物理传感、建模和控制
- 批准号:
1702394 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control for Large-Scale Wastewater Reuse and Algal Biomass Production
CPS:协同:协作研究:大规模废水回用和藻类生物质生产的网络物理传感、建模和控制
- 批准号:
1544798 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于SMART技术的鳄梨叶中诱导肿瘤细胞铁死亡的先导化合物的定
向挖掘
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
- 批准号:82360696
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
特定微环境激活的mRNA翻译(SMART)系统的设计及其免疫治疗应用研究
- 批准号:22307121
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ANDSystem与多组学的水稻和小麦胁迫响应分子调控网络及智能作物平台(Smart Crop)的构建
- 批准号:
- 批准年份:2022
- 资助金额:105 万元
- 项目类别:
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
精神障碍出院患者自杀风险简短联系干预(BCIs)的实施科学研究:基于序列多次分组的随机对照试验(SMART)
- 批准号:72004140
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
线上强化失眠认知行为治疗(Smart-CBTI plus)对失眠障碍合并焦虑、抑郁患者的随机对照研究
- 批准号:20Y11906600
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
DRiPs致病性T细胞与胰腺CUZD-1蛋白双靶向Smart-DDS诱导免疫耐受治疗1型糖尿病的研究
- 批准号:81970707
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
基于B-SMART的类风湿关节炎分级诊疗的药物治疗管理模式构建与评价
- 批准号:71804109
- 批准年份:2018
- 资助金额:16.5 万元
- 项目类别:青年科学基金项目
面向Smart Grid基于多反馈路径的安全无线数据收集方法研究
- 批准号:61003309
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
REU Site: University of Colorado, Engineering Smart Biomaterials
REU 站点:科罗拉多大学,工程智能生物材料
- 批准号:
2348856 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
- 批准号:
2401655 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Smart Tourism Experience: A Tourist-Centric Conceptualization and Empirical Investigation
智慧旅游体验:以游客为中心的概念化与实证研究
- 批准号:
24K15533 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Digitally-Integrated Smart Sensing of Diverse Airborne Grass Pollen Sources
多种空气传播草花粉源的数字集成智能传感
- 批准号:
DP240103307 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI-PigNet: The AI of social interactions for next gen smart animal breeding
AI-PigNet:下一代智能动物饲养的社交互动人工智能
- 批准号:
BB/Y513891/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant