CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control for Large-Scale Wastewater Reuse and Algal Biomass Production

CPS:协同:协作研究:大规模废水回用和藻类生物质生产的网络物理传感、建模和控制

基本信息

  • 批准号:
    1702394
  • 负责人:
  • 金额:
    $ 10.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

This project develops advanced cyber-physical sensing, modeling, control, and optimization methods to significantly improve the efficiency of algal biomass production using membrane bioreactor technologies for waste water processing and algal biofuel. Currently, many wastewater treatment plants are discharging treated wastewater containing significant amounts of nutrients, such as nitrogen, ammonium, and phosphate ions, directly into the water system, posing significant threats to the environment. Large-scale algae production represents one of the most promising and attractive solutions for simultaneous wastewater treatment and biofuel production. The critical bottleneck is low algae productivity and high biofuel production cost.The previous work of this research team has successfully developed an algae membrane bioreactor (A-MBR) technology for high-density algae production which doubles the productivity in an indoor bench-scale environment. The goal of this project is to explore advanced cyber-physical sensing, modeling, control, and optimization methods and co-design of the A-MBR system to bring the new algae production technology into the field. The specific goal is to increase the algal biomass productivity in current practice by three times in the field environment while minimizing land, capital, and operating costs. Specifically, the project will (1) adapt the A-MBR design to address unique new challenges for algae cultivation in field environments, (2) develop a multi-modality sensor network for real-time in-situ monitoring of key environmental variables for algae growth, (3) develop data-driven knowledge-based kinetic models for algae growth and automated methods for model calibration and verification using the real-time sensor network data, and (4) deploy the proposed CPS system and technologies in the field for performance evaluations and demonstrate its potentials.This project will demonstrate a new pathway toward green and sustainable algae cultivation and biofuel production using wastewater, addressing two important challenging issues faced by our nation and the world: wastewater treatment and renewable energy. It will provide unique and exciting opportunities for mentoring graduate students with interdisciplinary training opportunities, involving K-12 students, women and minority students. With web-based access and control, this project will convert the bench-scale and pilot scale algae cultivation systems into an exciting interactive online learning platform to educate undergraduate and high-school students about cyber-physical system design, process control, and renewable biofuel production.
该项目开发先进的信息物理传感,建模,控制和优化方法,以显着提高藻类生物质生产的效率,使用膜生物反应器技术进行废水处理和藻类生物燃料。目前,许多废水处理厂将含有大量营养物(如氮、铵和磷酸根离子)的处理后的废水直接排放到水系统中,对环境构成重大威胁。 大规模藻类生产是同时进行废水处理和生物燃料生产的最有前途和最有吸引力的解决方案之一。藻类生产率低和生物燃料生产成本高是其关键瓶颈。本研究团队的前期工作成功开发了藻类膜生物反应器(A-MBR)技术,用于高密度藻类生产,使室内实验室规模环境的生产率提高一倍。该项目的目标是探索先进的信息物理传感,建模,控制和优化方法以及A-MBR系统的协同设计,将新的藻类生产技术带入该领域。具体目标是在田间环境中将当前实践中的藻类生物质生产力提高三倍,同时最大限度地减少土地,资本和运营成本。具体而言,该项目将(1)调整A-MBR设计,以应对田间环境中藻类培养的独特新挑战,(2)开发多模态传感器网络,用于实时原位监测藻类生长的关键环境变量,(3)开发数据驱动的基于知识的藻类生长动力学模型,以及使用实时传感器网络数据进行模型校准和验证的自动化方法,以及(4)将建议的CPS系统和技术部署在现场进行性能评估并展示其潜力。该项目将展示一条通往绿色和可持续藻类养殖以及利用废水生产生物燃料的新途径,解决我国和世界面临的两个重要挑战性问题:废水处理和可再生能源。它将提供独特和令人兴奋的机会,指导研究生与跨学科的培训机会,涉及K-12学生,妇女和少数民族学生。通过基于网络的访问和控制,该项目将把实验室规模和中试规模的藻类培养系统转换成一个令人兴奋的交互式在线学习平台,以教育本科生和高中生关于网络物理系统设计,过程控制和可再生生物燃料生产。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piya Pal其他文献

Correlation Awareness in Low-Rank Models: Sampling, Algorithms, and Fundamental Limits
Effect of Beampattern on Matrix Completion with Sparse Arrays
波束方向图对稀疏阵列矩阵补全的影响
Performance limits of covariance-driven super resolution imaging
协方差驱动的超分辨率成像的性能限制
Channel Estimation for Hybrid MIMO Communication with (Non-) Uniform Linear Arrays via Tensor Decomposition
通过张量分解使用(非)均匀线性阵列进行混合 MIMO 通信的信道估计
Byron and the Politics of Freedom and Terror
拜伦与自由与恐怖的政治
  • DOI:
    10.1057/9780230306608_1
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew J. A. Green;Piya Pal
  • 通讯作者:
    Piya Pal

Piya Pal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Piya Pal', 18)}}的其他基金

Travel Grant Proposal for Signal Processing Advances in Wireless Communications (SPAWC) 2018
2018 年无线通信信号处理进展 (SPAWC) 差旅补助提案
  • 批准号:
    1829678
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
NCS-FO: Super resolution Mapping of Multi-scale Neuronal circuits Using Flexible Transparent Arrays
NCS-FO:使用灵活透明阵列的多尺度神经元电路的超分辨率映射
  • 批准号:
    1734940
  • 财政年份:
    2017
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
  • 批准号:
    1553954
  • 财政年份:
    2016
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CAREER: Smart Sampling and Correlation-Driven Inference for High Dimensional Signals
职业:高维信号的智能采样和相关驱动推理
  • 批准号:
    1700506
  • 财政年份:
    2016
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control for Large-Scale Wastewater Reuse and Algal Biomass Production
CPS:协同:协作研究:大规模废水回用和藻类生物质生产的网络物理传感、建模和控制
  • 批准号:
    1544798
  • 财政年份:
    2015
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant

相似海外基金

CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
  • 批准号:
    1853257
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1645578
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1646235
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1854321
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
  • 批准号:
    1739964
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
  • 批准号:
    1901728
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
  • 批准号:
    1842710
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
  • 批准号:
    1822332
  • 财政年份:
    2017
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了