CAREER:Open-Source Data Analytics for Distribution Systems Management and Operations
职业:用于配电系统管理和运营的开源数据分析
基本信息
- 批准号:1554178
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Distribution system operations (DSO) are designed to maintain reliability in the presence of predictable variability. Future distribution systems will operate in a dramatically different environment with deep penetration of distributed energy resources (e.g. solar, EVs, storage, smart loads) and widespread adoption of novel devices for network management resulting in increased variability. Unless DSO can be adapted to these conditions, performance and revenues of future utilities will be severely impaired. How to adapt Future systems will generate a wealth of data from consumers, line sensors and network equipment. Utilizing this data for learning, prediction and resource coordination is challenging and not fully understood. This proposal seeks to connect "bits to watts" utilizing modern data analytics in order to enable scalable and cost effective DSO for future distribution networks. In particular the proposal explores new approaches in machine learning, optimization and behavior learning and their applications in power systems. The methods will be implemented in a software platform: Visualization and Insight for Demand Operations and Management (VISDOM). The research component of the proposal will enable emissions reductions and massive scaling of the management of behind the meter resources. It contributes to the budding smart grid data analytics industry expected to reach a $6 billion market size by 2020. The education component of the proposal will create a novel curriculum and online education in data thinking to prepare the data analytics workforce of the future. The project will make use of large spatial and temporal data sets from industry and utilities to explore new approaches in machine learning, stochastic control & optimization and behavioral economics to address problems in power systems. The central problems that will be addressed are: (i) Build an adaptive consumer behavior learning framework that scales to large numbers of consumers; (ii) Investigate probabilistic demand forecasting and pricing methods at multiple scales ranging from individual residential consumers to communities; (iii) Develop a novel network reconstruction and monitoring framework to learn the power distribution network from data; (iv) Create data and simulation driven placement and coordination mechanisms for residential demand-side resources; and (v) Utilize an interactive platform that engages consumers in real-time to develop novel randomized trial approaches and apply it to innovative behavioral programs. Impacts such as increasing the value of consumer demand flexibility by more than 50% are expected. The resulting methods will be made available in open-source in the VISDOM platform. VISDOM can support a thriving community of academics and industry partners that experiment with demand side management. Currently, every project develops non-transparent and limited analysis mechanisms that consume time and resources. More broadly, the time-series data based approaches developed in this proposal are applicable to other fields such as marketing, healthcare and e-commerce. The education component will advance concepts from data thinking into power systems. The proposed curriculum includes a new hands-on course in data analytics for energy systems for undergraduate and masters students; online adult education courses directed at utility professionals and a broader audience and a K12 experimental practicum prepared with high school teachers visiting the PI's lab in a summer program. In addition, a smart grid seminar involving distinguished speakers from academia and industry will be supported and made available online.
配电系统运行(DSO)的目的是在可预测的变异性存在的情况下保持可靠性。未来的配电系统将在一个完全不同的环境中运行,分布式能源(如太阳能、电动汽车、储能、智能负载)的深度渗透,以及网络管理新设备的广泛采用,导致变异性的增加。除非DSO能够适应这些条件,否则未来公用事业的业绩和收入将受到严重损害。未来的系统将从消费者、线路传感器和网络设备中产生大量数据。利用这些数据进行学习、预测和资源协调是具有挑战性的,而且还没有被完全理解。该提案旨在利用现代数据分析将“比特到瓦”连接起来,以便为未来的配电网络实现可扩展和具有成本效益的DSO。该提案特别探讨了机器学习,优化和行为学习的新方法及其在电力系统中的应用。这些方法将在一个软件平台上实现:需求操作和管理的可视化和洞察(VISDOM)。该提案的研究部分将使减排和大规模管理仪表后面的资源成为可能。它有助于新兴的智能电网数据分析行业,预计到2020年将达到60亿美元的市场规模。该提案的教育部分将创建一个新颖的课程和数据思维在线教育,为未来的数据分析劳动力做好准备。该项目将利用来自工业和公用事业的大空间和时间数据集,探索机器学习、随机控制和优化以及行为经济学的新方法,以解决电力系统中的问题。将解决的核心问题是:(i)建立一个适应消费者行为的学习框架,可扩展到大量消费者;调查从个人住宅消费者到社区等多个尺度的概率需求预测和定价方法;发展一种新的网络重建和监测框架,从数据中学习配电网;为住宅需求方资源建立数据和模拟驱动的安置和协调机制;(v)利用实时吸引消费者的互动平台,开发新颖的随机试验方法,并将其应用于创新的行为计划。预计会产生诸如将消费者需求灵活性的价值提高50%以上等影响。生成的方法将在VISDOM平台上以开源方式提供。VISDOM可以支持一个蓬勃发展的学术界和行业合作伙伴社区,他们可以尝试需求侧管理。目前,每个项目都开发了不透明和有限的分析机制,这消耗了时间和资源。更广泛地说,本提案中制定的基于时间序列数据的方法适用于市场营销、医疗保健和电子商务等其他领域。教育部分将推进从数据思维到电力系统的概念。拟议的课程包括为本科生和硕士生开设一门新的能源系统数据分析实践课程;针对公用事业专业人员和更广泛受众的在线成人教育课程,以及在暑期项目中访问PI实验室的高中教师准备的K12实验实习。此外,来自学术界和工业界的杰出演讲者将参加智能电网研讨会,并将在网上提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ram Rajagopal其他文献
Pattern matching based on a generalized Fourier transform
基于广义傅立叶变换的模式匹配
- DOI:
10.1117/12.406527 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
D. Nair;Ram Rajagopal;L. Wenzel - 通讯作者:
L. Wenzel
Large language model enabled knowledge discovery of building-level electrification using permit data
大型语言模型利用许可证数据实现了建筑层面电气化的知识发现
- DOI:
10.1016/j.enbuild.2025.115890 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:7.100
- 作者:
Tony Liu;Chad Zanocco;Zhecheng Wang;Tianyuan Huang;June Flora;Ram Rajagopal - 通讯作者:
Ram Rajagopal
Design and Planning of a Multiple-Charger Multiple-Port Charging System for PEV Charging Station
PEV充电站多充电机多端口充电系统的设计与规划
- DOI:
10.1109/tsg.2017.2735636 - 发表时间:
2019 - 期刊:
- 影响因子:9.6
- 作者:
Huimiao Chen;Zechun Hu;Haocheng Luo;Junjie Qin;Ram Rajagopal;Hongcai Zhang - 通讯作者:
Hongcai Zhang
Improving Probabilistic Load Forecasting using Quantile Regression NN with Skip Connections
使用具有跳跃连接的分位数回归神经网络改进概率负载预测
- DOI:
10.1109/tsg.2020.2995777 - 发表时间:
2020 - 期刊:
- 影响因子:9.6
- 作者:
Wenjie Zhang;Hao Quan;Oktoviano G;hi;Ram Rajagopal;Chin-Woo Tan;Dipti Srinivasan - 通讯作者:
Dipti Srinivasan
Designing model predictive control strategies for grid-interactive water heaters for load shifting applications
为用于负荷转移应用的电网互动式热水器设计模型预测控制策略
- DOI:
10.1016/j.apenergy.2024.125149 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:11.000
- 作者:
Elizabeth Buechler;Aaron Goldin;Ram Rajagopal - 通讯作者:
Ram Rajagopal
Ram Rajagopal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ram Rajagopal', 18)}}的其他基金
CIF: Small: Collaborative Research: Generative Adversarial Privacy: A Data-driven Approach to Guaranteeing Privacy and Utility
CIF:小型:协作研究:生成对抗性隐私:保证隐私和实用性的数据驱动方法
- 批准号:
1814880 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Matching Parking Supply to Travel Demand towards Sustainability: a Cyber Physical Social System for Sensing Driven Parking
CPS:协同:协作研究:将停车供应与出行需求相匹配,实现可持续发展:传感驱动停车的网络物理社会系统
- 批准号:
1545043 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: Wireless sensor network and cloud-based interface for structural health monitoring
I-Corps:用于结构健康监测的无线传感器网络和基于云的界面
- 批准号:
1359560 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Snowflake: Lightweight and Adaptive Communications for Dense Sensor Networks
合作研究:Snowflake:密集传感器网络的轻量级自适应通信
- 批准号:
1232324 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Distributed Detection Algorithms and Stochastic Modeling for Large Monitoring Sensor Networks
CIF:小型:协作研究:大型监控传感器网络的分布式检测算法和随机建模
- 批准号:
1116377 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于升阶谱方法和Open CASCADE的高阶网格自动生成技术研究
- 批准号:11972004
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
变分与拓扑方法和Schrodinger方程中的Open 问题
- 批准号:10871109
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301410 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301405 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
- 批准号:
2338313 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301408 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301409 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301407 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - Diamond Light Source
2024 年开放访问块奖 - 钻石光源
- 批准号:
EP/Z531479/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
An innovative open-source private cloud platform enabling developers to create applications faster, easier, and 80% cheaper than public cloud
%20创新%20开源%20私有%20云%20平台%20启用%20开发人员%20到%20创建%20应用程序%20更快、%20更容易、%20和%2080%%20比%20公共%20云更便宜%20
- 批准号:
10096376 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301406 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Elements: MVP: Open-Source AI-Powered MicroVessel Processor for Next-Generation Vascular Imaging Data
要素:MVP:用于下一代血管成像数据的开源人工智能微血管处理器
- 批准号:
2311245 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant