CAREER: Bio-Enabled Actuating Materials (BEAM) to Power Autonomous Mobility

职业:生物驱动材料 (BEAM) 为自主移动提供动力

基本信息

  • 批准号:
    1554500
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractAutonomous mobility is a hallmark of many living organisms. When feeding, they harvest energy from their natural environment and convert it into mechanical work for movement. In contrast, most man-made systems must carry their own energy sources such as fuel or batteries, and then refuel or recharge in predetermined locations. Because of this limitation, it is not possible to fully assess when, where and why surface waters become contaminated with pathogenic microbes, making thousands of people sick every year. Solving this challenge requires development of an entirely new type of autonomous, mobile devices that can power themselves by feeding from the environment where they are deployed.To support autonomous mobility in aquatic environments, a new class of Bio-Enabled Actuating Materials (BEAM) will be developed, characterized and tested. BEAM consist of stimuli-sensitive soft hydrogels populated with electricity producing bacteria called Geobacter. Geobacter feed on organics abundant in fresh waters, and produce electric charge. The discharge of electricity forces the hydrogel to change its shape. The process then repeats, creating an oscillatory change in shape that propels the hydrogel. BEAM will become a platform for many applications in robotics, biomedicine, biosensing, wearable textiles, materials science, and micro- and nano-engineering.This problem can only be tackled through an interdisciplinary approach. While the need for interdisciplinary training and involvement in complex research projects both at graduate and undergraduate levels has been widely acknowledged, such practices are far from being systemic in academia. In this project, a cohort of graduate, undergraduate and 7-12 teachers and students, many from underrepresented groups, will be trained in principles of design and synthesis of BEAM, and in skills needed for interdisciplinary research and collaboration. These students will become proficient in tackling multi-faceted and societally important engineering challenges. Technical AbstractUnlike living organisms, most engineered systems must either carry their own fuel/batteries and refuel/recharge in predetermined locations, or be powered remotely. This limits their deployment in environments that are difficult to access, cost-prohibitive for powering remotely or refueling. Development of mobile, fully autonomous systems that mimic living organisms will transform exploration of remote locations, lakes, streams, deep ocean, or human body cavities. To make a qualitative leap in development of such systems, there is urgent need for novel materials capable of harvesting energy from the environment and converting it to support motility. These materials will impact multiple fields from robotics, biomedicine, biosensing, materials science, to micro- and nano-engineering.In this project, a novel class of Bio-Enabled Actuating Materials (BEAM) will be developed. BEAM contain Geobacter Sulfurreducens biofilm integrated within the network structure of thermosensitive poly-N-isopropylacrylamide (PNIPAAM) hydrogel. Geobacter feed on organics abundant in fresh waters, and produce electric charge. The discharge of electricity forces the hydrogel to change its shape. The process then repeats, creating an oscillatory change in shape that propels the hydrogel. BEAM will be synthesized, and their electrochemical characteristics will be studied to better understand its potential to harvest energy from the environment. Separate studies will focus on mechanical properties for actuation and propulsion. Solving this problem requires amalgamation of knowledge and skills from several fields, and can only be tackled through an interdisciplinary approach. While the need for interdisciplinary training and involvement in complex research projects has been widely acknowledged, such practices are far from being systemic in academia. In this project, a cohort of graduate, undergraduate and 7-12 teachers and students, many from underrepresented groups, will be trained in principles of design and synthesis of BEAM, and in skills needed for interdisciplinary research and collaboration. Research findings will be incorporated in existing courses to continue interdisciplinary training of current and future students.
非技术摘要自主移动是许多生物体的标志。进食时,它们从自然环境中获取能量并将其转化为运动所需的机械功。相比之下,大多数人造系统必须携带自己的能源,例如燃料或电池,然后在预定地点补充燃料或充电。由于这一限制,无法全面评估地表水何时、何地以及为何受到病原微生物污染,每年导致数千人患病。解决这一挑战需要开发一种全新类型的自主移动设备,这些设备可以通过从部署的环境中获取能量来为自己供电。为了支持水生环境中的自主移动,将开发、表征和测试一类新型生物驱动材料(BEAM)。 BEAM 由刺激敏感的软水凝胶组成,其中充满了称为 Geobacter 的发电细菌。地杆菌以淡水中丰富的有机物为食,并产生电荷。放电迫使水凝胶改变其形状。然后重复这个过程,产生形状的振荡变化,推动水凝胶。 BEAM 将成为机器人、生物医学、生物传感、可穿戴纺织品、材料科学以及微纳米工程等领域许多应用的平台。这个问题只能通过跨学科的方法来解决。尽管研究生和本科生需要进行跨学科培训和参与复杂的研究项目已得到广泛认可,但这种做法在学术界还远未系统化。在该项目中,一批研究生、本科生和 7-12 名教师和学生(其中许多来自代表性不足的群体)将接受有关 BEAM 设计和综合原理以及跨学科研究和协作所需技能的培训。这些学生将能够熟练应对多方面且对社会重要的工程挑战。技术摘要与生物体不同,大多数工程系统必须携带自己的燃料/电池并在预定位置补充燃料/充电,或者远程供电。这限制了它们在难以访问、远程供电或加油成本过高的环境中的部署。模仿生物体的移动、完全自主系统的开发将改变对偏远地区、湖泊、溪流、深海或人体腔体的探索。为了使此类系统的发展实现质的飞跃,迫切需要能够从环境中获取能量并将其转化为支持动力的新型材料。这些材料将影响机器人、生物医学、生物传感、材料科学、微纳米工程等多个领域。在该项目中,将开发一类新型生物驱动材料(BEAM)。 BEAM 包含集成在热敏聚 N-异丙基丙烯酰胺 (PNIPAAM) 水凝胶网络结构内的硫还原地杆菌生物膜。地杆菌以淡水中丰富的有机物为食,并产生电荷。放电迫使水凝胶改变其形状。然后重复这个过程,产生形状的振荡变化,推动水凝胶。将合成 BEAM,并研究其电化学特性,以更好地了解其从环境中获取能量的潜力。单独的研究将集中于驱动和推进的机械性能。解决这个问题需要融合多个领域的知识和技能,并且只能通过跨学科的方法来解决。虽然跨学科培训和参与复杂研究项目的必要性已被广泛认可,但这种做法在学术界还远未系统化。在该项目中,一批研究生、本科生和 7-12 名教师和学生(其中许多来自代表性不足的群体)将接受有关 BEAM 设计和综合原理以及跨学科研究和协作所需技能的培训。研究结果将纳入现有课程,以继续对当前和未来的学生进行跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vasile Nistor其他文献

Vasile Nistor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vasile Nistor', 18)}}的其他基金

Minimally Invasive Medical Technology Center (MIMTeC)
微创医疗技术中心 (MIMTeC)
  • 批准号:
    0652208
  • 财政年份:
    2007
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗 根分叉病变的临床疗效研究
  • 批准号:
    2024JJ9542
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态 光散射免疫传感检测平台的建立及机制研究
  • 批准号:
    Q24C200014
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
  • 批准号:
    LY23E080003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
  • 批准号:
    22005126
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
  • 批准号:
    19ZR1438800
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
  • 批准号:
    41877481
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

FMRG: Bio: Manufacturing Ultra-High-Density DNA-Enabled Nanoelectronics Systems
FMRG:生物:制造超高密度 DNA 纳米电子系统
  • 批准号:
    2328217
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
A bio-nano-enabled microcarrier for microplastic degradation
用于微塑料降解的生物纳米微载体
  • 批准号:
    EP/Y016599/1
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Fellowship
Automatic qubit control for large-scale quantum computers enabled by neuromorphic computing and cryogenic bio-inspired hardware
通过神经形态计算和低温仿生硬件实现大规模量子计算机的自动量子位控制
  • 批准号:
    DGECR-2022-00100
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Launch Supplement
PFI-TT: Advancing Nanocellulose-Enabled Bio-Nanofertilizers for Agriculture
PFI-TT:推进纳米纤维素生物纳米肥料用于农业
  • 批准号:
    2140820
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Artificial Intelligence (AI)-enabled Cryogenic Electron Ptychography For Bio-macromolecule Imaging
用于生物大分子成像的人工智能 (AI) 低温电子叠层成像术
  • 批准号:
    2729815
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Studentship
Automatic qubit control for large-scale quantum computers enabled by neuromorphic computing and cryogenic bio-inspired hardware
通过神经形态计算和低温仿生硬件实现大规模量子计算机的自动量子位控制
  • 批准号:
    RGPIN-2022-04235
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Bio-tissue Oxygenation Nanophosphor Enabled Sensing (BONES) system for Quantifying Hypoxia in Bone Marrow
开发用于量化骨髓缺氧的生物组织氧化纳米磷传感 (BONES) 系统
  • 批准号:
    10255544
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
Development of a Bio-tissue Oxygenation Nanophosphor Enabled Sensing (BONES) system for Quantifying Hypoxia in Bone Marrow
开发用于量化骨髓缺氧的生物组织氧化纳米磷传感 (BONES) 系统
  • 批准号:
    10573284
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
FMSG: Bio: End-to-End Continuous Manufacture of Cell Therapies Enabled by Robotics and Microfluidic Processing
FMSG:生物:通过机器人和微流体处理实现细胞疗法的端到端连续制造
  • 批准号:
    2134701
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Development of a Bio-tissue Oxygenation Nanophosphor Enabled Sensing (BONES) system for Quantifying Hypoxia in Bone Marrow
开发用于量化骨髓缺氧的生物组织氧化纳米磷传感 (BONES) 系统
  • 批准号:
    10408542
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了