FMSG: Bio: End-to-End Continuous Manufacture of Cell Therapies Enabled by Robotics and Microfluidic Processing
FMSG:生物:通过机器人和微流体处理实现细胞疗法的端到端连续制造
基本信息
- 批准号:2134701
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-15 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will seek to create a more continuous, integrated workflow for cell therapy manufacturing based upon microfluidic technology and robotic cell processing. The transition to a more continuous cell therapy manufacturing workflow from the current batch processing can include a higher purity and yield of potent cells, which has also benefited other conventional manufacturing workstreams such as chemical manufacturing. With the cost of life-saving cell therapies $100k per dose, innovating new integrated processes and technologies for cell therapy products is essential to expand access and increase the rate of innovation. There are several challenges to cell therapy manufacturing that this study will address. First, cell therapy products are currently produced using a “batch” manufacturing approach that consists of a multi-step process. As a result, the process results in batch-to-batch variation, an inability to use donor-specific variables in the manufacturing, and difficulty in system control of critical quality attributes. Second, the sensors that are used in cell therapy manufacturing that are related to cell function (e.g., molecular) are not real-time and cannot be used in nimble process control. Third, because autologous therapies are derived from a patient-donor, there is substantial variability of the starting material—yet this variability is not incorporated into the manufacturing process. The broader impacts of the project include the training of graduate and undergraduate students in microfluidic approaches to cell therapy manufacturing that may increase the innovation rate and decrease the costs associated with clinical cell manufacturing, while enabling small industry to innovate in the production of therapeutic cells.This project will harness fluid dynamics at the microscale using integrated microfluidic transfection and separation operations, as well as vision- and data analytics-enabled robotics to help automate the cell culture process. As a testbed, the study will apply the technologies to an induced pluripotent stem cell (iPSC) derived retinal organoid manufacturing process. The new technology and process control will be applied to generate functional retinal cell grafts, i.e., 3D engineered retinal constructs from iPSC-derived retinal organoids. The project can improve regenerative strategies through greater integration of iPSC genetic engineering, robotics-based culture, and new label-free cell selection methods to purify desired cell types that are consistent with Good Manufacturing Practices production. The team brings together three core expertises to accomplish the transformation: a current Good Manufacturing Practices process for retinal organoid manufacturing from human induced pluripotent stem cell culture; microfluidics-enabled cell transfection, characterization, and separation unit operations; and a capability for robotics-enabled cell processing and image analysis. The first objective is to apply a cell microfluidic transfection platform that uses choreographed mechanical deformations to convectively deliver large gene-editing CRISPR/Cas9 and DNA cargo to iPSCs. Moreover, because patient-derived specimens vary from donor to donor, the study will also characterize the biomechanical properties of donor cells to optimize the transfection. The second objective is to combine automated cell culture systems and machine learning to develop a robotic platform capable of performing high quality automated iPSC generation, CRISPR-correction, and retinal differentiation. The third objective examines how mixtures of retinal cells can better produce functional retinal grafts using a label-free cell separation microfluidic technology. Together the intellectual merits of this project will be to demonstrate an integrated approach to generate 3D engineered retinal constructs to address inherited blindness. This Future Manufacturing award was supported by Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将寻求为基于微流控技术和机器人细胞处理的细胞治疗制造创建一个更连续、更集成的工作流程。从目前的批处理向更连续的细胞治疗制造流程的过渡可以包括更高纯度和更高产量的有效细胞,这也使其他传统制造流程受益,如化学制造。由于挽救生命的细胞疗法的成本为每剂10万美元,创新细胞疗法产品的新集成工艺和技术对于扩大获取途径和提高创新率至关重要。这项研究将解决细胞治疗制造的几个挑战。首先,细胞治疗产品目前是使用由多步骤工艺组成的“批量”制造方法生产的。因此,该工艺导致批次之间的差异,无法在制造中使用特定于供体的变量,以及难以对关键质量属性进行系统控制。其次,用于细胞治疗制造的与细胞功能(例如,分子)相关的传感器不是实时的,不能用于灵活的过程控制。第三,由于自体疗法源自患者-捐赠者,因此起始材料有很大的变异性--然而这种变异性并未纳入制造过程。该项目的更广泛影响包括对研究生和本科生进行细胞治疗制造的微流控方法培训,这可能会提高创新率并降低与临床细胞制造相关的成本,同时使小型工业能够在治疗细胞的生产方面进行创新。该项目将利用集成的微流控导入和分离操作在微尺度上利用流体动力学,以及支持视觉和数据分析的机器人来帮助实现细胞培养过程的自动化。作为试验床,这项研究将把这些技术应用于诱导多能干细胞(IPSC)衍生的视网膜有机体制造过程。新技术和过程控制将被应用于生产功能性视网膜细胞移植物,即从IPSC衍生的视网膜器质中构建的3D工程视网膜结构。该项目可以通过更好地整合IPSC基因工程、基于机器人的培养和新的无标签细胞选择方法来改进再生策略,以提纯符合良好制造规范生产的所需细胞类型。该团队汇集了三项核心专业知识来完成这一转变:目前用于从人类诱导的多潜能干细胞培养中制造视网膜有机物的良好制造实践流程;支持微流体的细胞转基因、鉴定和分离单元操作;以及支持机器人的细胞处理和图像分析能力。第一个目标是应用一种细胞微流控转染平台,利用编排的机械变形将大的基因编辑CRISPR/Cas9和DNA货物对流输送到IPSCs。此外,由于患者来源的样本因供体不同而不同,该研究还将对供体细胞的生物力学特性进行表征,以优化转基因。第二个目标是将自动化细胞培养系统和机器学习相结合,开发一种能够执行高质量自动IPSC生成、CRISPR矫正和视网膜分化的机器人平台。第三个目标是研究视网膜细胞的混合物如何使用无标记细胞分离微流控技术更好地产生功能性视网膜移植物。总而言之,这个项目的智力优势将是展示一种集成的方法来产生3D工程视网膜结构,以解决遗传性失明问题。这一未来制造奖得到了分子和细胞生物科学的支持。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Sulchek其他文献
In-cell NMR based technology to study protein interactions
- DOI:
10.1016/j.bpj.2021.11.1170 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Alexander Shekhtman;Leonard Breindel;Nicholas Sciolino;David Burz;Todd Sulchek - 通讯作者:
Todd Sulchek
Correlating Mechanical and Gene Expression Data on the Single Cell Level to Investigate Metastasis
- DOI:
10.1016/j.bpj.2019.11.1150 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Katherine M. Young;Congmin Xu;Kelly Ahkee;Roman Mezencev;Peng Qiu;Todd Sulchek - 通讯作者:
Todd Sulchek
Delivery of target proteins through microfluidics supports increased cell viability for in-cell NMR spectroscopy
- DOI:
10.1016/j.bpj.2021.11.733 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Nicholas Sciolino;Anna Liu;Leonard Breindel;Aaron Premo;David S. Burz;Todd Sulchek;Alexander Shekhtman - 通讯作者:
Alexander Shekhtman
Single-platelet nanomechanics measured by high-throughput cytometry
通过高通量细胞计数法测量的单血小板纳米力学
- DOI:
10.1038/nmat4772 - 发表时间:
2016-10-10 - 期刊:
- 影响因子:38.500
- 作者:
David R. Myers;Yongzhi Qiu;Meredith E. Fay;Michael Tennenbaum;Daniel Chester;Jonas Cuadrado;Yumiko Sakurai;Jong Baek;Reginald Tran;Jordan C. Ciciliano;Byungwook Ahn;Robert G. Mannino;Silvia T. Bunting;Carolyn Bennett;Michael Briones;Alberto Fernandez-Nieves;Michael L. Smith;Ashley C. Brown;Todd Sulchek;Wilbur A. Lam - 通讯作者:
Wilbur A. Lam
Todd Sulchek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Sulchek', 18)}}的其他基金
Collaborative Research: RECODE: Microfluidic and genetic technologies to direct and select retinal cell types from human induced pluripotent stem cell-derived retinal organoids
合作研究:RECODE:微流体和遗传技术从人类诱导多能干细胞衍生的视网膜类器官中指导和选择视网膜细胞类型
- 批准号:
2225476 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Spatially Patterned Nano/Microparticles to Traverse Biological Barriers
空间图案纳米/微粒跨越生物屏障
- 批准号:
1507238 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Understanding the Relationship Between Cell Mechanical Variability and Gene Expression Through Single Cell Experiments and Modeling
通过单细胞实验和建模了解细胞机械变异与基因表达之间的关系
- 批准号:
1538161 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Understanding Multivalent Biological Bonds for Biosensor Applications
职业:了解生物传感器应用的多价生物键
- 批准号:
1055437 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
- 批准号:
1063279 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Microfluidic separation of particles based upon stiffness
基于刚度的颗粒微流体分离
- 批准号:
0932510 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
- 批准号:
EP/Z001013/1 - 财政年份:2025
- 资助金额:
$ 50万 - 项目类别:
Fellowship
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
- 批准号:
2328276 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Bio-active過酸化チタンナノ粒子を併用した革新的放射線免疫療法の開発
使用生物活性过氧化钛纳米粒子开发创新放射免疫疗法
- 批准号:
24K10760 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Designing a bio-sensitive visualisation for saltmarsh conservation
设计用于盐沼保护的生物敏感可视化
- 批准号:
AH/Z50533X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant