CAREER: Advanced Molecular Architectures for Electronically-Active Radical Polymers

职业:电子活性自由基聚合物的先进分子结构

基本信息

  • 批准号:
    1554957
  • 负责人:
  • 金额:
    $ 50.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThe development of new electronic materials is critical to a number of technological fields that range from defense applications to personal electronic devices to biomedical monitoring and drug delivery. This project will develop new kinds of plastic electronic materials that are lightweight, flexible, and stretchable in nature. In particular, it will establish how such polymers can be used in next-generation flexible electronic devices. In addition to having robust mechanical properties these plastics also can be deposited in a manner that is consistent with low-cost production techniques like inkjet printing. Furthermore, these efforts will correlate the mechanical properties of the newly-synthesized materials with electronic properties of plastic materials. In achieving this goal, the project will be able to establish the fundamental design principles that will allow for a new class of plastic conductors to be implemented in a number of energy conversion, energy storage, and biomedical devices, which will aid the nation and individual consumers. Additionally, this effort will support the training of graduate, undergraduate, and high school students in the realm of fundamental and applied polymer science. In particular, a high school research program will be implemented in order to attract a larger number of students from economically-disadvantaged families to the polymer science field so as to increase the diversity of the upcoming population of scientists and engineers. Also, the general public will have access to these same types of polymer science lessons due to the development of a massive open online course (MOOC) that will be focused on polymer synthesis and application. In this way, the effort presented here will offer significant fundamental polymer science, polymer engineering, and educational impacts that will allow for the advancement of new plastic electronic materials in both the near and long terms.TECHNICAL SUMMARYElectronically-active macromolecules have been of intense investigation for their application in a number of advanced energy conversion and energy storage modules. To date, the majority of the effort regarding these polymeric materials and polymer-based devices has focused on closed-shell polymers containing a rather high degree of conjugation along their macromolecular backbones. Recently, however, a new class of oxidation-reduction-active (redox-active), non-conjugated organic entities known as radical polymers (i.e., macromolecules comprised of non-conjugated backbones and with pendant groups bearing stable radical sites) have attracted a great deal of attention for their relatively high performance in electrolyte-supported and solid-state organic electronic device applications. However, it is becoming apparent that, without fundamental advances regarding the polymer chemistry and polymer physics of open-shell macromolecules, the true potential of radical polymer systems will not be established despite the potential advantages that radical polymers could have relative to conjugated polymer systems. This effort will address these issues through the coupling of polymer synthesis with fundamental polymer physics measurements and the electrical characterization of these designer macromolecules. In particular, the PI and his group will: (1) synthesize a suite of targeted macromolecules containing select backbones, stereoregularities, and open-shell architectures; (2) evaluate the structural, thermal, and flow properties of these newly-synthesized materials; (3) correlate the electronic properties of the novel radical polymers to their chemical, thermal, and structural properties; and (4) refine the design of the macromolecules in order to elucidate their fundamental structure-property-performance relationships. In this way, this effort will provide the design principles that should allow for the radical polymers to be translated into commercially-relevant, commodity materials. This, in turn, also will allow open-shell macromolecules to play a larger part in the growing organic electronics industry.
新电子材料的发展对许多技术领域至关重要,从国防应用到个人电子设备,再到生物医学监测和药物输送。该项目将开发新型塑料电子材料,这些材料具有轻量化、柔韧性和可拉伸性。特别是,它将确定如何将这种聚合物用于下一代柔性电子设备。除了具有坚固的机械性能外,这些塑料还可以以一种与喷墨打印等低成本生产技术相一致的方式沉积。此外,这些努力将把新合成材料的力学性能与塑料材料的电子性能联系起来。为了实现这一目标,该项目将能够建立基本的设计原则,这将允许一种新型塑料导体应用于许多能量转换、能量存储和生物医学设备,这将有助于国家和个人消费者。此外,这项工作将支持研究生、本科生和高中生在基础和应用聚合物科学领域的培训。特别是,为吸引更多经济困难家庭的学生进入高分子科学领域,增加未来科学家和工程师的多样性,将实施高中研究计划。此外,由于大规模开放在线课程(MOOC)的发展,公众将有机会获得这些相同类型的聚合物科学课程,该课程将专注于聚合物的合成和应用。通过这种方式,这里提出的努力将提供重要的基础聚合物科学,聚合物工程和教育影响,这将允许在近期和长期内发展新的塑料电子材料。技术综述电子活性大分子因其在一些先进的能量转换和储能模块中的应用而受到广泛的研究。迄今为止,关于这些聚合物材料和聚合物基器件的大部分努力都集中在闭壳聚合物上,这些聚合物在其大分子骨架上具有相当高的共轭度。然而,最近,一类新的氧化还原活性(氧化还原活性),非共轭有机实体被称为自由基聚合物(即由非共轭骨架和具有稳定自由基位点的悬垂基团组成的大分子)因其在电解质支持和固态有机电子器件中的相对高性能而引起了广泛的关注。然而,越来越明显的是,尽管自由基聚合物相对于共轭聚合物体系具有潜在的优势,但如果没有关于开壳大分子的聚合物化学和聚合物物理的基本进展,自由基聚合物体系的真正潜力将无法建立。这项工作将通过聚合物合成与基本聚合物物理测量的耦合以及这些设计大分子的电学表征来解决这些问题。特别是,PI和他的团队将:(1)合成一套包含选定骨架,立体规则和开壳结构的目标大分子;(2)评价这些新合成材料的结构、热学和流动性能;(3)将新型自由基聚合物的电子性质与其化学、热学和结构性质联系起来;(4)改进大分子的设计,以阐明其基本的结构-性能-性能关系。通过这种方式,这项工作将提供设计原则,允许自由基聚合物转化为商业相关的商品材料。反过来,这也将使开壳大分子在不断发展的有机电子工业中发挥更大的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett Savoie其他文献

Brett Savoie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett Savoie', 18)}}的其他基金

CAREER: Chemical Network Based Understanding and Prediction of Electrolyte Decomposition in Batteries
职业:基于化学网络的电池电解质分解的理解和预测
  • 批准号:
    2045887
  • 财政年份:
    2021
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Standard Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
  • 批准号:
    2349345
  • 财政年份:
    2024
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Continuing Grant
Molecular regulation and expression of Trop-2 in advanced prostate cancer: Identifying optimal therapeutic niches
晚期前列腺癌中 Trop-2 的分子调控和表达:确定最佳治疗领域
  • 批准号:
    10735996
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
Advanced Molecular Frameworks for Sodium Battery Electrode Applications
钠电池电极应用的先进分子框架
  • 批准号:
    LP210100435
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Linkage Projects
Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Theoretical Elucidation of the Adaptation Mechanism in Molecular Motors and Its Application to Advanced Function Design
分子马达适应机制的理论阐明及其在高级功能设计中的应用
  • 批准号:
    22KJ0505
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
  • 批准号:
    23K20039
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Investigating molecular interactions of p53 regulated by post translation modifications and intrinsically disordered regions with advanced simulation
通过高级模拟研究翻译后修饰和本质无序区域调节的 p53 分子相互作用
  • 批准号:
    23H02445
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Frameworks: An Advanced Cyberinfrastructure for Atomic, Molecular, and Optical Science (AMOS): Democratizing AMOS for Research and Education
框架:原子、分子和光学科学 (AMOS) 的先进网络基础设施:将 AMOS 民主化用于研究和教育
  • 批准号:
    2311928
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
    Standard Grant
Shared Resource Core 1: Molecular Data Science and Advanced Dosimetry
共享资源核心 1:分子数据科学和高级剂量测定
  • 批准号:
    10712295
  • 财政年份:
    2023
  • 资助金额:
    $ 50.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了