Shared Resource Core 1: Molecular Data Science and Advanced Dosimetry
共享资源核心 1:分子数据科学和高级剂量测定
基本信息
- 批准号:10712295
- 负责人:
- 金额:$ 25.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAgeAnatomyArtificial IntelligenceBiologicalBiological AssayBlood flowCancer BiologyCellsClinicalClonal EvolutionCollaborationsCommunitiesComplexComputer ModelsComputing MethodologiesDNA RepairDataData CollectionData ScienceData Science CoreData SecurityData SetData Storage and RetrievalDatabasesDoseEnsureEpigenetic ProcessEvolutionFaceFundingGenomicsGoalsGrantImageImmunofluorescence ImmunologicInfrastructureLinkMalignant Childhood NeoplasmMalignant NeoplasmsMethodologyMethodsModelingMolecularNatural Language ProcessingNeuroblastomaNeuroepithelial, Perineurial, and Schwann Cell NeoplasmOutcomePatientsPediatric NeoplasmPeripheral Blood InvolvementPopulationPublishingRadiation OncologyRadiation therapyRadionuclide therapyResearch PersonnelResistanceResource SharingResourcesSpecimenStructureSystemThe Cancer Genome AtlasTrainingTumor TissueWeightWorkaccess restrictionsanalysis pipelinecancer genomicsclinically significantdata exchangedata hubdata integritydata managementdata repositorydesigndiffuse midline gliomadosimetryexomeexperiencegenomic dataimprovedindividual patientinterestmembermetaiodobenzylguanidinemiRNA expression profilingneoplastic cellnovelprofiles in patientsradiation effectradiation resistanceradiation responseradiomicsrepositorysingle-cell RNA sequencingstructured datatranscriptome sequencingtranscriptomicstreatment planningtumortumor heterogeneitytumor microenvironmentwhole genome
项目摘要
PROJECT SUMMARY
The convergence of radiation oncology, cancer genomics, data science, computational modeling, and artificial
intelligence presents spectacular opportunities and challenges. In the Harvard/UCSF ROBIN, we propose to
capitalize on these opportunities to improve our understanding of radiation response and resistance. The
clinical vehicles for our ROBIN Center are diffuse midline gliomas (DMGs) and neuroblastoma, the two most
clinically significant pediatric tumors of neural ectodermal origin. We hypothesize that intratumoral
heterogeneity drives radiation response and resistance, and that the mechanisms thereof can be identified by
deciphering tumor cell-intrinsic and -extrinsic components of the tumor microenvironment before, during, and
after radiotherapy. The Molecular Data Science and Advanced Dosimetry Core (Data Science Core) is an
essential component of the Harvard/UCSF ROBIN Center. It will serve as the hub for data storage and
management, analysis, and integration of all molecular datatypes generated by the Center, advanced
dosimetry modeling, and predictive computational modeling platforms. Specifically, the Core will work to (i)
retrieve, curate, and manage molecular data related to the Harvard/UCSF ROBIN Center and provide the
infrastructure necessary to efficiently provide access to all data required for achieving the ROBIN goals; (ii)
analyze and integrate all molecular data types generated in Projects 1 and 2; (iii) generate advanced
dosimetry data, including accurate distributions of dose for radionuclide therapy and dose received by tumor
cells, that are required to investigate the biological hypotheses proposed in Projects 1 and 2; (iv) conduct
mechanistic modeling of radiation effects and evolution of resistance to radiotherapy that directly supports the
aims of Projects 1 and 2 and can inform data collection and address the hypotheses of the ROBIN Center;
and (v) share findings and novel methods with the ROBIN Network and the scientific community at large.
Toward these ends, the Core will coordinate its activities closely with Projects 1 and 2 and the other cores, in
particular with the AI Core, focusing on imaging, radiomics, and natural language processing, and the
Molecular Characterization Trial. The Core will also work closely with the Cross-Training Core and the
Administrative Core to reach other members of the ROBIN Network and the larger scientific community. The
Core will be directed by two investigators, Drs. Michor and Seo, who have expansive and complementary
expertise and have assembled a team of experienced investigators to contribute to the goals of the Core. We
anticipate that the results of the Data Science Core will be broadly utilized by all components of the ROBIN
Center and the larger ROBIN Network as well as the broader scientific community, and will significantly
contribute to understanding data science and dosimetry/cancer evolution aspects across a broad suite of
cancers and treatments.
项目摘要
放射肿瘤学、癌症基因组学、数据科学、计算建模和人工智能的融合
智能带来了巨大的机遇和挑战。在哈佛/加州大学旧金山分校罗宾,我们建议,
利用这些机会提高我们对辐射反应和抵抗力的认识。的
我们ROBIN中心的临床工具是弥漫性中线胶质瘤(DMG)和神经母细胞瘤,这两种肿瘤是最常见的。
神经外胚层起源的临床显著儿科肿瘤。我们假设肿瘤内
异质性驱动辐射反应和抗性,其机制可以通过以下方式确定:
在肿瘤形成之前、期间和之后,
放疗后分子数据科学和高级剂量学核心(数据科学核心)是一个
哈佛/加州大学旧金山分校罗宾中心的重要组成部分。它将作为数据存储的中心,
管理、分析和整合中心生成的所有分子数据库,
剂量学建模和预测计算建模平台。具体而言,核心小组将致力于:
检索,策划和管理与哈佛/UCSF罗宾中心相关的分子数据,并提供
为实现ROBIN目标有效提供所有数据访问所需的基础设施;
分析和整合项目1和2中生成的所有分子数据类型;(iii)生成高级
剂量学数据,包括放射性核素治疗剂量和肿瘤接受剂量的准确分布
细胞,这是研究项目1和2中提出的生物学假设所需的;(iv)进行
放射效应的机制建模和对放射疗法的抗性的演变,直接支持
项目1和2的目标,可以为数据收集提供信息,并解决罗宾中心的假设;
以及(v)与ROBIN网络和整个科学界分享发现和新方法。
为此,核心小组将与项目1和2以及其他核心小组密切协调其活动,
特别是人工智能核心,专注于成像,放射组学和自然语言处理,以及
分子表征试验。核心小组还将与交叉培训核心小组和
行政核心,以达到其他成员的罗宾网络和更大的科学界。的
核心将由两名研究人员,Michor博士和Seo博士指导,他们具有广泛和互补的知识。
我们拥有丰富的专业知识,并组建了一支经验丰富的调查人员团队,为核心的目标做出贡献。我们
预计数据科学核心的成果将被ROBIN的所有组成部分广泛利用
中心和更大的罗宾网络以及更广泛的科学界,并将显着
有助于理解数据科学和剂量学/癌症演变方面的一系列广泛的
癌症和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franziska Michor其他文献
Franziska Michor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franziska Michor', 18)}}的其他基金
Quantitative systems biology of glioblastoma cells and their interactions with the neuronal and immunological milieu
胶质母细胞瘤细胞的定量系统生物学及其与神经元和免疫环境的相互作用
- 批准号:
10729273 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
- 批准号:
10490298 - 财政年份:2021
- 资助金额:
$ 25.36万 - 项目类别:
Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
- 批准号:
10271570 - 财政年份:2021
- 资助金额:
$ 25.36万 - 项目类别:
Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
- 批准号:
10688256 - 财政年份:2021
- 资助金额:
$ 25.36万 - 项目类别:
Evolutionary Dynamics of Brain, Lung, and Hematopoietic Tumors
脑、肺和造血肿瘤的进化动力学
- 批准号:
8534841 - 财政年份:2009
- 资助金额:
$ 25.36万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant