CAREER: Biologically inspired neural network models for robust speech processing
职业:受生物学启发的神经网络模型,用于稳健的语音处理
基本信息
- 批准号:1555079
- 负责人:
- 金额:$ 50.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent parallel breakthroughs in deep neural network models and neuroimaging techniques have significantly advanced the current state of artificial and biological computing. However, there has been little interaction between these two disciplines, resulting in simplistic models of neural systems with limited prediction, learning and generalization abilities. The goal of this project is to create a coherent theoretical and mathematical framework to understand the computational role of distinctive features of biological neural networks, their contribution to the formation of robust signal representations, and to model and integrate them into the current artificial neural networks. These new bio-inspired models and algorithms will have adaptive and cognitive abilities, will better predict experimental observations, and will advance the knowledge of how the brain processes speech. In addition, the performance of these models should approach human abilities in tasks mimicking cognitive functions, and will motivate new experiments that can further impose realistic constraints on the models. This interdisciplinary project lies at the intersection of neurolinguistics, speech engineering, and machine learning, uniting the historically separated disciplines of neuroscience and engineering. The proposed innovative approach integrates methods and expertise across various disciplines, including system identification, signal processing, neurophysiology, and systems neuroscience. The aim of this proposal is to analyze and transform the artificial neural network models to accurately reflect the computational and organizational principles of biological systems through three specific objectives: I) to create analytic methods that can provide insights into the transformations that occur in artificial neural network models by examining their representational properties and feature encoding, II) to model and implement the local, bottom-up, adaptive neural mechanisms that appear ubiquitously in biological systems, and III) to model the top-down, knowledge driven abilities of cognitive systems to implement new computations in response to the task requirements. Accurate computational models of the neural transformations will have an overarching impact in many disciplines including artificial intelligence, neurolinguistics, and systems neuroscience. More realistic neural network models will not only result in human-like pattern recognition technologies and better understanding of how the brain solves speech perception, but can also help explain how these processes are impaired in people with speech and language disorders. Therefore, the proposed project will advance the state-of-the-art in multiple disciplines.
近年来,深度神经网络模型和神经成像技术的并行突破,极大地推动了人工计算和生物计算的发展。然而,这两个学科之间的相互作用很少,导致神经系统模型过于简单化,预测、学习和泛化能力有限。该项目的目标是创建一个连贯的理论和数学框架,以理解生物神经网络的独特特征的计算作用,它们对形成鲁棒信号表示的贡献,并将它们建模并集成到当前的人工神经网络中。这些新的受生物启发的模型和算法将具有适应性和认知能力,将更好地预测实验观察结果,并将推进大脑如何处理语言的知识。此外,这些模型的性能应该在模拟认知功能的任务中接近人类的能力,并将激发新的实验,进一步对模型施加现实约束。这个跨学科项目位于神经语言学、语音工程和机器学习的交叉点,将历史上分离的神经科学和工程学学科结合在一起。提出的创新方法整合了不同学科的方法和专业知识,包括系统识别、信号处理、神经生理学和系统神经科学。本提案的目的是通过三个具体目标对人工神经网络模型进行分析和转换,以准确反映生物系统的计算和组织原理:1)创建分析方法,通过检查人工神经网络模型的表征特性和特征编码来洞察人工神经网络模型中发生的转换;2)建模和实现局部的、自下而上的、自适应的神经机制,这些机制在生物系统中无处不在;3)建模自顶向下的、知识驱动的认知系统能力,以实现响应任务要求的新计算。神经转换的精确计算模型将对包括人工智能、神经语言学和系统神经科学在内的许多学科产生重大影响。更现实的神经网络模型不仅会产生类似人类的模式识别技术,更好地理解大脑是如何解决语言感知的,而且还可以帮助解释这些过程是如何在言语和语言障碍患者中受损的。因此,拟议的项目将推进多个学科的最新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nima Mesgarani其他文献
Nima Mesgarani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2325863 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2047570 - 财政年份:2021
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant
CAREER: Biologically Inspired Platforms: Finding The Tricks Worth Mimicking In The Extracellular Matrix
职业:受生物启发的平台:在细胞外基质中寻找值得模仿的技巧
- 批准号:
1352299 - 财政年份:2014
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant
CAREER: Biologically-Inspired Actuation and Control of Robotic Above-Knee Prostheses
职业:机器人膝上假肢的仿生驱动和控制
- 批准号:
1351520 - 财政年份:2014
- 资助金额:
$ 50.22万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Artificial Skins with Continuous Carbon Nanotube Composites
职业:采用连续碳纳米管复合材料的仿生人造皮肤
- 批准号:
1104640 - 财政年份:2010
- 资助金额:
$ 50.22万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Artificial Skins with Continuous Carbon Nanotube Composites
职业:采用连续碳纳米管复合材料的仿生人造皮肤
- 批准号:
0846827 - 财政年份:2009
- 资助金额:
$ 50.22万 - 项目类别:
Standard Grant
CAREER: Biologically-Inspired Polymer Microeletromechanical Systems (MEMS) for Bi-Directional Neural Interfaces
职业:用于双向神经接口的生物启发聚合物微机电系统 (MEMS)
- 批准号:
0547544 - 财政年份:2006
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant
CAREER: Development of a Biologically Inspired Morphing Structure
职业:开发受生物启发的变形结构
- 批准号:
0348448 - 财政年份:2004
- 资助金额:
$ 50.22万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Learning Algorithms for Artificial Sensorimotor Systems
职业:人工感觉运动系统的生物启发学习算法
- 批准号:
0347132 - 财政年份:2004
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant
CAREER: Artificial Brownian Motors - Education and Research in Biologically Inspired Physics at the Nanoscale
职业:人工布朗电机 - 纳米尺度生物启发物理学的教育和研究
- 批准号:
0239764 - 财政年份:2003
- 资助金额:
$ 50.22万 - 项目类别:
Continuing Grant