CAREER: Biologically-Inspired Polymer Microeletromechanical Systems (MEMS) for Bi-Directional Neural Interfaces
职业:用于双向神经接口的生物启发聚合物微机电系统 (MEMS)
基本信息
- 批准号:0547544
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractEllis MengThe objective of this proposal is to develop biocompatible microsystems that will seamlessly interface with neural systems. Neurons communicated using both electrical and chemical signals.Microelectromechanical systems (MEMS) will be developed that mimic this cellular communication at biological spatial and temporal scales. Integration of microelectrodes and microfluidics into a single platform allows multi-channel bi-directional interaction with cells and tissue at a level of sophistication not possible with existing instrumentation. These microsystems will incorporate polymers that have been demonstrated to elicit minimal bioreactivity and biofouling. To achieve these objectives, my research group will develop the following tools:Develop active, multi-channel microfluidic systems for spatially and temporally precise delivery and sampling of biological fluids, nutrients, and drugsDevelop stable, long-term, and biocompatible polymer devices with appropriate passivation andisolation of electrodes for support of cells and tissue slices Integrate electrical and microfluidic elements for localized dual-mode stimulation and recording from dissociated cells and intact tissue slicesThese tools will advance scientific discovery in cellular biology and neuropharmacology. Additionally, they will enable new techniques for advancing neuroengineering and tissue engineering which include: Dual-mode in vitro sensing of biological processes in neural cells and tissue slices Localized biofeedback based on biological cues for controlled and sustained growth In vitro studies on axonal growth and guidance in cells, tissue, and co-cultures Implantable dual-mode microsystems for in vivo investigation of neural injury and repairINTELLECTUAL MERITThe central nervous system is the most complex biological system and arguably the most important. It is also the most difficult system to interface with. This CAREER plan will develop sophisticated dual-mode tools to enable investigation and manipulation of local neural microenvironment conditions. Such capability is not possible with the current state-of-the-art. The intellectual merit lies in the development of new tools that advance our knowledge of the cause-effect relationship between electrical and chemical signals in neurons communication. This microsystems interface technology will also be applied to other biological systems. The ultimate goal is to develop novel biomedical implants that provide bi-directional electrical and chemical cues for re-growing neural circuits and restoring lost neural functions.BROADER IMPACTInjuries to the central nervous system (e.g. traumatic brain injury, spinal cord injury, and stroke) result in devastating lifelong physical disabilities in millions of Americans and are presently incurable conditions. This research will enable new understanding of neural injury and lead to new treatments that promote neural repair. The direct benefits to society include the alleviation human suffering and reduction in health care costs. Integrated research and education activities are planned for the University of Southern California (USC) and its surrounding communities with emphasis in increased participation by females and minorities.
本提案的目标是开发与神经系统无缝接口的生物相容性微系统。神经元通过电信号和化学信号进行通信,微机电系统(MEMS)将在生物空间和时间尺度上模拟这种细胞通信。将微电极和微流体集成到单个平台中允许以现有仪器不可能达到的复杂程度与细胞和组织进行多通道双向相互作用。这些微系统将包含已被证明能引起最小生物活性和生物污染的聚合物。为了实现这些目标,我的研究小组将开发以下工具:开发主动的多通道微流控系统,用于生物流体、营养物质和药物的时空精确输送和采样开发稳定、长期和生物相容的聚合物装置,具有适当的钝化和电极分离,用于支持细胞和组织切片集成电和微流控元件,用于局部双模刺激和记录分离细胞和完整组织切片这些工具将推动细胞生物学和神经药理学的科学发现。此外,他们将使新技术,推进神经工程和组织工程,其中包括:神经细胞和组织切片中生物过程的双模式体外感测基于生物线索的局部生物反馈用于受控和持续的生长在细胞、组织中轴突生长和引导的体外研究中,和共培养中枢神经系统是最复杂的生物系统,可以说是最复杂的生物系统,重要.它也是最难连接的系统。该职业计划将开发复杂的双模式工具,以实现对局部神经微环境条件的调查和操纵。这种能力是不可能的与目前的国家的最先进的知识价值在于开发新的工具,推进我们的知识之间的因果关系的电和化学信号在神经元通信。这种微系统接口技术也将应用于其他生物系统。最终目标是开发新型生物医学植入物,提供双向的电和化学线索,用于重新生长神经回路和恢复失去的神经功能。更广泛的影响中枢神经系统损伤(例如创伤性脑损伤,脊髓损伤和中风)导致数百万美国人终身残疾,目前是无法治愈的疾病。这项研究将使人们对神经损伤有新的认识,并导致促进神经修复的新疗法。对社会的直接好处包括减轻人类痛苦和减少保健费用。计划为南加州大学及其周边社区开展综合研究和教育活动,重点是增加女性和少数民族的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellis Meng其他文献
Rapid and repeated bolus drug delivery enabled by high efficiency electrochemical bellows actuators
通过高效电化学波纹管执行器实现快速、重复的推注药物输送
- DOI:
10.1109/transducers.2011.5969616 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
R. Sheybani;H. Gensler;Ellis Meng - 通讯作者:
Ellis Meng
Materials Characterization for Microneedle-Based Molecular Sensing Platform
基于微针的分子传感平台的材料表征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christopher E. Larson;K. Plaxco;Ellis Meng - 通讯作者:
Ellis Meng
An implantable microelectrode array for chronic in vivo epiretinal stimulation of the rat retina
用于大鼠视网膜慢性体内视网膜前刺激的植入式微电极阵列
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Eugene J Yoon;Beomseo Koo;Janeline Wong;S. Elyahoodayan;J. Weiland;Curtis Lee;A. Petrossians;Ellis Meng - 通讯作者:
Ellis Meng
A wireless implantable drug infusion system with integrated dosing sensors
具有集成剂量传感器的无线植入式药物输注系统
- DOI:
10.1109/transducers.2015.7181105 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Sheybani;Ellis Meng - 通讯作者:
Ellis Meng
A Microfabricated Nanobubble-Based Sensor for Physiological Pressure Monitoring
用于生理压力监测的微加工纳米气泡传感器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Xuechun Wang;E. Yoon;Ellis Meng - 通讯作者:
Ellis Meng
Ellis Meng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellis Meng', 18)}}的其他基金
A wearable monolithic wireless multi-sensor system based on reflected impedance
基于反射阻抗的可穿戴单片无线多传感器系统
- 批准号:
1933318 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
PFI-TT: Sensor System for Early Warning of Hydrocephalus Shunt Failure
PFI-TT:脑积水分流失败早期预警传感器系统
- 批准号:
1827773 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Customer discovery for microsensor platforms in the management of hydrocephalus
I-Corps:微传感器平台在脑积水治疗中的客户发现
- 批准号:
1837941 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
PFI:AIR - TT: Wireless implantable pressure sensor for continuous monitoring of chronic disorders
PFI:AIR - TT:无线植入式压力传感器,用于持续监测慢性疾病
- 批准号:
1601340 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AIR Option 1: Technology Translation - Wireless control of distributed and implanted micro infusion pumps
AIR选项1:技术翻译-分布式和植入式微型输液泵的无线控制
- 批准号:
1343467 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
2013 Microtechnologies in Medicine and Biology Conference, April 10-12, 2013, Marina Del Ray, CA
2013 年医学和生物学微技术会议,2013 年 4 月 10-12 日,加利福尼亚州玛丽娜德尔雷
- 批准号:
1314901 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EFRI-BioFlex: Hybrid polymer-paper based multi-sensor implants for continuous remote monitoring
EFRI-BioFlex:基于混合聚合物纸的多传感器植入物,用于连续远程监控
- 批准号:
1332394 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Trapped Microbubbles in Polymer MEMS Microcapsules as a Novel Pressure Sensing Principle Based on Electrochemical Impedance Transduction
聚合物 MEMS 微胶囊中捕获的微泡作为基于电化学阻抗转换的新型压力传感原理
- 批准号:
1231994 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Establishing an innovation ecosystem for technology transition of MEMS-based drug infusion pumps
I-Corps:建立MEMS药物输注泵技术转型创新生态系统
- 批准号:
1157852 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2325863 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2047570 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Biologically inspired neural network models for robust speech processing
职业:受生物学启发的神经网络模型,用于稳健的语音处理
- 批准号:
1555079 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Biologically Inspired Platforms: Finding The Tricks Worth Mimicking In The Extracellular Matrix
职业:受生物启发的平台:在细胞外基质中寻找值得模仿的技巧
- 批准号:
1352299 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Biologically-Inspired Actuation and Control of Robotic Above-Knee Prostheses
职业:机器人膝上假肢的仿生驱动和控制
- 批准号:
1351520 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Artificial Skins with Continuous Carbon Nanotube Composites
职业:采用连续碳纳米管复合材料的仿生人造皮肤
- 批准号:
1104640 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Artificial Skins with Continuous Carbon Nanotube Composites
职业:采用连续碳纳米管复合材料的仿生人造皮肤
- 批准号:
0846827 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Development of a Biologically Inspired Morphing Structure
职业:开发受生物启发的变形结构
- 批准号:
0348448 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Biologically Inspired Learning Algorithms for Artificial Sensorimotor Systems
职业:人工感觉运动系统的生物启发学习算法
- 批准号:
0347132 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Artificial Brownian Motors - Education and Research in Biologically Inspired Physics at the Nanoscale
职业:人工布朗电机 - 纳米尺度生物启发物理学的教育和研究
- 批准号:
0239764 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant