CAREER: Quantum Emulation of Strongly Driven Interacting Systems

职业:强驱动交互系统的量子仿真

基本信息

  • 批准号:
    1555313
  • 负责人:
  • 金额:
    $ 71.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract: Using lasers that can be turned on and off extremely quickly, scientists can now probe the behavior of electrons inside atoms at timescales smaller than a millionth of a billionth of a second. This capability has the potential to unlock new technologies, including cameras for imaging electron motion inside biomolecules, ultrafast information processors, and devices based on exotic non-equilibrium states of matter. However, these exciting developments will require major advances in our ability to understand and control non-equilibrium quantum systems. To this end, the research team is building an artificial solid in which trapped strontium atoms are used to emulate the behavior of electronic solids on ultrafast-equivalent timescales. Using this approach, the team aims to reveal hitherto invisible ultrafast processes in matter, in regimes beyond the limits of existing theories and experiments. Research activities are integrated into local science education at the high school, community college, undergraduate, graduate, and postdoctoral levels, with a focus on scientific professional development. As part of the project, the PI guides a multi-layered mentoring system in which graduate students and postdocs are trained to become advocates for science literacy and leaders who encourage broad participation in research. Technical Abstract: This project studies interactions between intense pulsed fields and solids using optically trapped ultracold strontium as a quantum emulator of ultrafast dynamics, thus probing some of the fastest processes in atomic physics using some of the slowest. As a result of this rescaling of time, the dynamics underlying ultrafast phenomena like tunnel ionization occur over milliseconds rather than attoseconds, and can be observed in extreme slow-motion. The research consists of three related efforts: (1) studies of the impulse response of interacting quantum systems; (2) exploration of exotic strong-driving Hamiltonians beyond those which are currently possible in the solid state; and (3) realization of controllable emergent non-equilibrium phases in driven lattice systems. The quantum-emulator-based approach enables clean realization and study of strong-field phenomena, provides a tool for validation and extension of existing approximate theories of ultrafast interactions, and opens the path to studying new forms of matter and new phenomena that emerge in non-equilibrium regimes beyond the reach of existing ultrafast experiments.
非技术摘要:使用可以非常快速地打开和关闭的激光器,科学家现在可以在小于十亿分之一秒的时间尺度上探测原子内部电子的行为。这种能力有可能解锁新技术,包括用于成像生物分子内部电子运动的相机,超快信息处理器和基于奇异非平衡态物质的设备。然而,这些令人兴奋的发展将需要我们在理解和控制非平衡量子系统的能力方面取得重大进展。为此,研究小组正在构建一种人造固体,其中被捕获的锶原子被用来模拟电子固体在超快等效时间尺度上的行为。使用这种方法,该团队的目标是揭示物质中迄今不可见的超快过程,超越现有理论和实验的限制。研究活动被纳入当地科学教育在高中,社区学院,本科,研究生和博士后水平,重点是科学专业发展。作为该项目的一部分,PI指导了一个多层次的指导系统,在该系统中,研究生和博士后接受培训,成为科学素养的倡导者和鼓励广泛参与研究的领导者。技术摘要:该项目研究强脉冲场与固体之间的相互作用,使用光学捕获的超冷锶作为超快动力学的量子模拟器,从而使用一些最慢的过程来探测原子物理学中一些最快的过程。由于这种时间尺度的重新调整,像隧道电离这样的超快现象背后的动力学发生在毫秒而不是阿秒,并且可以在极慢的运动中观察到。该研究包括三个相关的工作:(1)相互作用量子系统的脉冲响应的研究;(2)探索奇异的强驱动哈密顿算子,超越目前在固态中可能的哈密顿算子;(3)在驱动晶格系统中实现可控的涌现非平衡相。基于量子仿真器的方法能够清晰地实现和研究强场现象,为验证和扩展现有的超快相互作用近似理论提供了工具,并为研究新形式的物质和新现象开辟了道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Weld其他文献

David Weld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Weld', 18)}}的其他基金

Integrative Training in Quantum Assembly and Technology
量子组装与技术综合培训
  • 批准号:
    2152201
  • 财政年份:
    2022
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Standard Grant
Quantum Many-Body Thermodynamic Engines
量子多体热力发动机
  • 批准号:
    2110584
  • 财政年份:
    2021
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Fellowship
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Feasibility Studies
Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
  • 批准号:
    10088290
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Collaborative R&D
Indistinguishable Quantum Emitters in van der Waals Materials
范德华材料中难以区分的量子发射器
  • 批准号:
    DP240103127
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Discovery Projects
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Studentship
Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa
通过量子流体浴消除量子电路中的噪声 - SQuBa
  • 批准号:
    EP/Y022289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Research Grant
Molecules for Quantum simulation
量子模拟分子
  • 批准号:
    MR/X033430/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Fellowship
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了