CAREER: Programmable Artificial DNA Topology for Biological and Medical Applications

职业:用于生物和医学应用的可编程人工 DNA 拓扑

基本信息

  • 批准号:
    1555361
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:This award by the Biomaterials program in the Division of Materials Research to University of Chicago supports the investigation of nucleic acid structures by looking at the relationship between the topological structure of nucleic acid and its function. This researcher will construct nano-architectures encoded with different functionalities to probe the activity of the machinery of the cell. Furthermore, this support will be used for the development of assays to quantitatively measure the activity of the enzymes responsible for the modulation of these nucleic acid topologies within the cell. Detailed analyses of these interactions will offer researchers information relevant for targeted therapeutics, as well as for unlocking the role of these enzymes in cell cycle regulation. This project will provide resources and opportunities for high school, undergraduate, and graduate students in the fields of molecular biology and chemistry to explore interdisciplinary studies relating to biological topology and enzyme kinetics. By collaborating with the surrounding local schools, this investigator will encourage students from traditionally underrepresented demographics to participate in scientific exploration through scholastic workshops and summer research initiatives. As a member of the Seminar Committee, this researcher will organize weekly public seminars for visiting faculty members, serving the research community at the University of Chicago and other nearby academic institutions.Technical Abstract:This project will advance the understanding of nucleic acid topology within the cell, and will help elucidate how these different 3-D structures interact with topoisomerases and polymerases for cell regulation and replication. The first research goal is to develop novel complex molecular topologies using the Four-Way-Junction and advance their applications in chemical and biological studies. The simplicity and flexibility of the proposed strategy allows for the construction of innovative nanostructures with diverse topologies to probe enzyme kinetics and biological processes. The synthesis of higher-order topologies encoded with various nucleic acid functionalities, on a cell-relevant size-scale, will represent a critical step in furthering the understanding of the relationship between DNA structure and function. The double stranded DNA knots will be tested as substrates for human topoisomerases, which will allow them to monitor the enzyme activity in real time. The significance of this lies in their ability to interrogate the effects on reaction rates of a range of topoisomerase drugs both in vitro and in vivo. Additionally, by measuring in real time activity of topoisomerases upon exposure to various small molecule inhibitors, information regarding the efficacy of certain therapeutics can be qualitatively measured both in vitro and in vivo. By interfacing with nucleic acid amplification technologies, the assay can be designed to operate in a wide variety of conditions in a method consistent with the goals of a high-throughput system. This project will provide resources and opportunities for high school, undergraduate, and graduate students in the fields of molecular biology and chemistry to explore interdisciplinary studies relating to nucleic acid topology, chemical biology, and enzyme kinetics.
摘要:该奖项由芝加哥大学材料研究部生物材料项目颁发,通过研究核酸的拓扑结构与其功能之间的关系,支持对核酸结构的研究。该研究人员将构建具有不同功能编码的纳米结构,以探测细胞机制的活动。此外,这种支持将用于开发定量测量细胞内负责这些核酸拓扑结构调节的酶的活性的检测方法。对这些相互作用的详细分析将为研究人员提供与靶向治疗相关的信息,以及解锁这些酶在细胞周期调节中的作用。该项目将为分子生物学和化学领域的高中生、本科生和研究生提供资源和机会,以探索与生物拓扑和酶动力学相关的跨学科研究。通过与周围的当地学校合作,该调查员将鼓励来自传统上代表性不足的人口统计学的学生通过学术研讨会和暑期研究计划参与科学探索。作为研讨会委员会的成员,该研究员将为来访的教职员工组织每周的公开研讨会,为芝加哥大学和其他附近学术机构的研究社区服务。技术摘要:本项目将促进对细胞内核酸拓扑结构的理解,并将有助于阐明这些不同的三维结构如何与拓扑异构酶和聚合酶相互作用以调节和复制细胞。第一个研究目标是利用四向结开发新的复杂分子拓扑结构,并推进其在化学和生物学研究中的应用。所提出的策略的简单性和灵活性允许构建具有不同拓扑结构的创新纳米结构来探测酶动力学和生物过程。在细胞相关的尺度上,合成各种核酸功能编码的高阶拓扑结构,将是进一步理解DNA结构和功能之间关系的关键一步。双链DNA结将作为人类拓扑异构酶的底物进行测试,这将使他们能够实时监测酶的活性。这项研究的意义在于他们能够在体外和体内研究一系列拓扑异构酶药物对反应速率的影响。此外,通过在暴露于各种小分子抑制剂时实时测量拓扑异构酶的活性,可以在体外和体内定性地测量有关某些治疗方法功效的信息。通过与核酸扩增技术相结合,该分析可以设计成在各种条件下操作,其方法与高通量系统的目标一致。该项目将为分子生物学和化学领域的高中生、本科生和研究生提供资源和机会,探索与核酸拓扑、化学生物学和酶动力学相关的跨学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yossi Weizmann其他文献

Single Particle Hopping as an Indicator for Evaluating Electrocatalysts
单粒子跳跃作为评估电催化剂的指标
  • DOI:
    10.1021/acs.nanolett.2c01631
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Jun-Gang Wang;Linjuan Zhang;Jing Xie;Yossi Weizmann;Di Li;Jinghong Li
  • 通讯作者:
    Jinghong Li
Molecular light-to-heat conversion promotes orthogonal synthesis and assembly of metal-organic frameworks
分子光热转换促进金属有机框架的正交合成与组装
  • DOI:
    10.1038/s41467-025-57933-0
  • 发表时间:
    2025-03-20
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Aritra Biswas;Nir Lemcoff;Ofir Shelonchik;Mark Baranov;Gil Gordon;Uri Ben Nun;Yossi Weizmann
  • 通讯作者:
    Yossi Weizmann
In situ assembly FeSsub2/sub-tetrathiomolybdate nanosheets for imaging-guided tumor vascular collapse and amplified catalytic therapy
原位组装FESSUB2/亚四酸盐纳米片,用于成像引导的肿瘤血管塌陷和扩增的催化疗法
  • DOI:
    10.1016/j.nantod.2024.102244
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Jiajia Yin;Wenyu Sun;Hongjie Xiong;Jiang Xiao;Zengchao Guo;Xiaohui Liu;Bing Zhang;Hui Jiang;Yossi Weizmann;Xuemei Wang
  • 通讯作者:
    Xuemei Wang
Structural analysis of nanobody interactions with their prostate-specific membrane antigen binding epitopes
  • DOI:
    10.1016/j.ijbiomac.2025.145693
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Gal Alon-Zchut;Ran Zalk;Truc T. Huynh;Michael R. Zalutsky;Yossi Weizmann;Raz Zarivach;Niv Papo
  • 通讯作者:
    Niv Papo

Yossi Weizmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC*Integration-Large: Programmable Network Testbed for 400 Gbps Science DMZ
CC*Integration-Large:400 Gbps Science DMZ 的可编程网络测试台
  • 批准号:
    2346605
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
  • 批准号:
    EP/Y026284/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CRII: AF: Reconfiguration Algorithms for Programmable Matter
CRII:AF:可编程物质的重新配置算法
  • 批准号:
    2348067
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
  • 批准号:
    2339254
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Programmable Ferroelectric Nanoelectronics for In-memory Computing
用于内存计算的可编程铁电纳米电子学
  • 批准号:
    DP240102137
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了