CAREER: Elasticity and Lattice Dynamics of Iron Alloys under Earth's Core Conditions
职业:地球核心条件下铁合金的弹性和晶格动力学
基本信息
- 批准号:1555388
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-15 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Residing at the center of the Earth, the core is the innermost but extremely dynamic region of our planet. Over the last two decades, geophysicists have expended tremendous effort in deciphering the compositional makeup, thermal structure, and seismic features of the Earth's core. Understanding the nature and dynamics of the core can deeply enhance our abilities in understanding the magnetic field generation process, the thermo-chemical evolution of the Earth's deep interior, and the formation of the Earth as a habitable planet. This Faculty Early Career Development (CAREER) program aims to investigate the elasticity and lattice dynamics of iron alloys as candidates for the inner core under high pressure and temperature conditions of the core, using multiscale state-of-the-art experimental facilities. The outcome of the proposed research is a new set of fundamental mineral physics data on density, sound velocities, and single-crystal elasticity of iron alloys under previously uncharted pressure-temperature regimes, essential for us to provide further constraints on the core's composition and dynamics. The experimental results are to be integrated to a comprehensive mineral physics database for the core, cultivating collaborations with sister disciplines such as seismology, geodynamics and geochemistry, and ultimately enhancing our profound understanding of nature and dynamics of the Earth's deepest interior. Furthermore, the involvement of student researchers in the proposed research and the development of a research and teaching facility for high-pressure mineral and materials science will initiate the 'pipeline' that helps influence and attract diverse student population, particularly traditionally underrepresented minorities, into Earth science and build diverse geoscience workforce.This proposal aims to systematically measure high pressure-temperature elastic and vibrational properties of candidate iron alloys for the inner core, using synchrotron-based X-ray spectroscopies combined with resistively- and laser-heated diamond anvil cell techniques, so as to address the following scientific questions: (1) How do pressure and temperature affect the elastic and vibrational properties of iron alloys under core conditions? (2) What are the alloying effects of candidate light elements on the elasticity of iron under core conditions? (3) What are the single crystal elasticities of iron alloys approaching the core conditions, for the interpretation of the inner core's seismic anisotropy and fine-scale seismic? (4) Finally, what are the likely lighter alloying components in the inner core and what would that imply for the thermochemical evolution of the core and the planet? The integrated education and outreach objective is to train a new generation of independent solid Earth geoscientists in laboratory- and synchrotron-based facilities and to offer inquiry-base learning opportunities and experience to K-16 students through the implementation of a 'Multi-Anvil Press Laboratory' (MAPLab) teaching module to geosciences curricula. The results of the project will be widely disseminated on a timely manner through national and international meetings, public lectures and outreach, and news media.
居住在地球的中心,核心是我们星球的最内向但极具动态的区域。在过去的二十年中,地球物理学家在破译地球核心的组成构成,热结构和地震特征方面花费了巨大的努力。了解核心的性质和动力学可以深入增强我们在理解磁场生成过程,地球深内部的热化学演化以及地球形成作为宜居行星的能力。该教师早期职业发展(职业)计划旨在使用多尺度的最先进的实验设施来研究铁合金在高压和温度条件下的内核的弹性和晶格动态。拟议的研究的结果是一组新的基本矿物物理学数据,涉及以前未知的压力温度方面的铁合金的密度,声速和单晶弹性,这对于我们对核心组成和动力学提供进一步限制至关重要。实验结果将集成到核心的综合矿物物理数据库中,与地震学,地球动力学和地球化学等姐妹学科进行合作,并最终增强我们对地球最深内部的自然和动态的深刻理解。此外,学生研究人员参与提出的研究和教学设施,用于高压矿物质和材料科学的研究和教学设施将启动“管道”,这有助于影响和吸引多样化的学生人数,尤其是传统上代表性的少数群体,尤其是传统上代表性的少数群体,融入地球科学,并建立了多样化的地球科学范围,以衡量竞争性的竞争性,以实施竞争性的竞争力,以实现趋势的竞争力,以系统地构成候选人的竞争力。核心,使用基于同步加速器的X射线光谱镜结合了电阻和激光加热的钻石砧细胞技术,以解决以下科学问题:(1)压力和温度如何影响核心条件下铁合金的弹性和振动特性? (2)候选光元素对铁弹性在核心条件下的弹性的合金作用是什么? (3)铁合金的单晶体弹性接近核心条件,以解释内核的地震各向异性和细尺度地震般的地震? (4)最后,内核中可能更轻的合金组件是什么,这意味着核心和行星的热化学演化意味着什么?综合的教育和外展目标是在基于实验室和同步加速器的设施中培训新一代独立的固体地球科学家,并通过实施“多型ANVIL新闻实验室”(MapLAB)教学模块向地球科学教学的询问。该项目的结果将通过国家和国际会议,公开演讲,外展以及新闻媒体及时广泛传播。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carbon in the Core, in Deep Earth: Physics and Chemistry of the Lower Mantle and Core (eds H. Terasaki and R. A. Fischer)
地球深处地核中的碳:下地幔和地核的物理和化学(H. Terasaki 和 R. A. Fischer 编辑)
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Chen, B.;Li, J.
- 通讯作者:Li, J.
Elastic and magnetic properties of Fe3P up to core pressures: Phosphorus in the Earth's core
- DOI:10.1016/j.epsl.2019.115974
- 发表时间:2020-02-01
- 期刊:
- 影响因子:5.3
- 作者:Lai, Xiaojing;Zhu, Feng;Chen, Bin
- 通讯作者:Chen, Bin
Density of Fe‐Ni‐C Liquids at High Pressures and Implications for Liquid Cores of Earth and the Moon
高压下 Fe-Ni-C 液体的密度及其对地球和月球液体核心的影响
- DOI:10.1029/2020jb021089
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhu, Feng;Lai, Xiaojing;Wang, Jianwei;Amulele, George;Kono, Yoshio;Shen, Guoyin;Jing, Zhicheng;Manghnani, Murli H.;Williams, Quentin;Chen, Bin
- 通讯作者:Chen, Bin
Superstoichiometric Alloying of H and Close‐Packed Fe‐Ni Metal Under High Pressures: Implications for Hydrogen Storage in Planetary Core
高压下 H 和密堆积 Fe-Ni 金属的超化学计量合金化:对行星核心储氢的影响
- DOI:10.1029/2022gl101155
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Piet, Hélène;Chizmeshya, Andrew;Chen, Bin;Chariton, Stella;Greenberg, Eran;Prakapenka, Vitali;Buseck, Peter;Shim, Sang‐Heon
- 通讯作者:Shim, Sang‐Heon
An Externally-Heated Diamond Anvil Cell for Synthesis and Single-Crystal Elasticity Determination of Ice-VII at High Pressure-Temperature Conditions
- DOI:10.3791/61389
- 发表时间:2020-06-01
- 期刊:
- 影响因子:1.2
- 作者:Lai, Xiaojing;Zhu, Feng;Chen, Bin
- 通讯作者:Chen, Bin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Chen其他文献
Meander Line Coupled Cavity-Backed Slot Antenna for Broadband Circular Polarization
用于宽带圆极化的曲折线耦合背腔缝隙天线
- DOI:
10.1109/lawp.2015.2399017 - 发表时间:
2015-02 - 期刊:
- 影响因子:4.2
- 作者:
Kang Luo;Bin Chen;Wei-Ping Ding - 通讯作者:
Wei-Ping Ding
Energy Consumption and Exergy Analysis of MEA-Based and Hydrate-Based CO2 Separation
基于 MEA 和基于水合物的 CO2 分离的能耗和火用分析
- DOI:
10.1021/acs.iecr.7b03729 - 发表时间:
2017 - 期刊:
- 影响因子:4.2
- 作者:
Nan Xie;Bin Chen;Chenghua Tan;Zhiqiang Liu - 通讯作者:
Zhiqiang Liu
Iron isotope fractionation in reduced hydrothermal gold deposits: A case study of the Wulong gold deposit, Liaodong Peninsula, East China
还原热液金矿床中铁同位素分馏:以中国东部辽东半岛五龙金矿床为例
- DOI:
10.2138/am-2020-7534 - 发表时间:
2021-02 - 期刊:
- 影响因子:3.1
- 作者:
Jiahao Zheng;Bin Chen;Shuaijie Liu;Chuang Bao - 通讯作者:
Chuang Bao
p-nitrophenol-terminated alkyl side chain substituted polymer as high dielectric constant polymer additive enables efficient organic solar cells
对硝基苯酚封端的烷基侧链取代聚合物作为高介电常数聚合物添加剂可实现高效有机太阳能电池
- DOI:
10.1016/j.optmat.2022.112347 - 发表时间:
2022-05 - 期刊:
- 影响因子:3.9
- 作者:
Bin Chen;Qian Wang;Bingbing Wang;Wentao Miao;Guopeng Zhang;Yuan Zhou;Pengzhi Guo;Yangjun Xia - 通讯作者:
Yangjun Xia
Large-Scale Pedestrian Evacuation Modeling During Nuclear Leakage Accident
核泄漏事故期间大规模行人疏散建模
- DOI:
10.1007/978-981-10-2672-0_28 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Qiu;Zhen Li;Liang Ma;Zhengqiu Zhu;Bin Chen;X. Qiu;Xingbing Li - 通讯作者:
Xingbing Li
Bin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Chen', 18)}}的其他基金
MRI RI-Track 2: Development of the Expanded Owens Valley Solar Array (EOVSA)-15--Major Upgrade of a Community Facility for Solar and Space Weather Physics
MRI RI-轨道 2:扩展欧文斯谷太阳能电池阵列 (EOVSA)-15 的开发——太阳能和空间天气物理社区设施的重大升级
- 批准号:
2320478 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
- 批准号:
2229338 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2108853 - 财政年份:2021
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Structure and thermal elastic properties of calcium silicate perovskite
硅酸钙钛矿的结构与热弹性性能
- 批准号:
2127807 - 财政年份:2021
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Laboratory Technician Support: Experimental Mineral Physics and Petrology Facilities at the University of Hawaii at Manoa
实验室技术人员支持:夏威夷大学马诺阿分校的实验矿物物理和岩石学设施
- 批准号:
1829273 - 财政年份:2018
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE--Magnetic Energy Release During Solar Eruptions - From Large to Small Scales
合作研究:SHINE——太阳喷发期间的磁能释放——从大尺度到小尺度
- 批准号:
1723436 - 财政年份:2017
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
CAREER: Probing Energy Release in Solar Explosive Events with New Generation Radio Telescopes
职业:用新一代射电望远镜探测太阳爆炸事件中的能量释放
- 批准号:
1654382 - 财政年份:2017
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Collaborative Research: Electron Acceleration and Emissions from the Solar Flare Termination Shock
合作研究:太阳耀斑终止激波的电子加速和发射
- 批准号:
1735405 - 财政年份:2017
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Experimental and Theoretical Investigations on the Elastic and Viscoelastic Properties of Fe-Ni-C Liquids
CSEDI合作研究:Fe-Ni-C液体弹性和粘弹性的实验和理论研究
- 批准号:
1565708 - 财政年份:2016
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
CDI-Type I: Collaborative Research: Development of computational algorithms and analysis tools for molecular-level understanding of complex atmospheric nucleation processes
CDI-I 型:合作研究:开发计算算法和分析工具,以在分子水平上理解复杂的大气成核过程
- 批准号:
1052015 - 财政年份:2010
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
相似国自然基金
黏弹性-惯性微流道内生物粒子精准操控机理研究
- 批准号:51805270
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于浸入边界—格子Boltzmann方法的复杂弹性血管内红细胞迁移与变形机理研究
- 批准号:11702259
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
聚合物复杂流动问题模拟的格子Boltzmann方法与应用
- 批准号:11601411
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于LBM-IBM-DEM的微纳米弹性微球微观渗流的耦合模型及数值模拟
- 批准号:51604291
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
平直槽道内柱体绕流场中流致振动的研究
- 批准号:11402129
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Designing lattice materials with bilinear elasticity
设计具有双线性弹性的晶格材料
- 批准号:
541804-2019 - 财政年份:2019
- 资助金额:
$ 57万 - 项目类别:
University Undergraduate Student Research Awards
Development of high-speed super-resolution membrane skeleton elasticity mapping and its application to cell motility analysis
高速超分辨率膜骨架弹性图的发展及其在细胞运动分析中的应用
- 批准号:
18K19001 - 财政年份:2018
- 资助金额:
$ 57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Bridging across mathematical analysis, probability and materials mechanics for a better modeling of martensitic microstructure and defects.
跨越数学分析、概率和材料力学,更好地建模马氏体微观结构和缺陷。
- 批准号:
16K21213 - 财政年份:2016
- 资助金额:
$ 57万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on interfacial elasticity and function in superlattice
超晶格界面弹性与功能研究
- 批准号:
21760076 - 财政年份:2009
- 资助金额:
$ 57万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on anisotropic elasticity theory and development of computer code for lattice defects
各向异性弹性理论研究及晶格缺陷计算机代码开发
- 批准号:
20560616 - 财政年份:2008
- 资助金额:
$ 57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)