CSEDI Collaborative Research: Experimental and Theoretical Investigations on the Elastic and Viscoelastic Properties of Fe-Ni-C Liquids

CSEDI合作研究:Fe-Ni-C液体弹性和粘弹性的实验和理论研究

基本信息

  • 批准号:
    1565708
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The Earth's core, the most remote and dynamic part of our planet, is composed of liquid iron alloys solidified at its center. The nature and dynamics of the core are closely related to manifold geophysical problems such as the driving force of mantle convection, the geodynamo, and planetary evolution. The core is predominantly iron (Fe) alloyed with 5-10% nickel (Ni) and some lighter elements, such as sulfur (S), silicon (Si), carbon (C), oxygen (O), and hydrogen (H). The knowledge of the properties of Fe-rich alloys and liquids under relevant core conditions is a prerequisite for understanding the composition, thermal state and dynamics of the core. In comparison to crystalline iron alloys for the inner core, there exists a remarkable lack of data on liquid properties of iron-rich alloys due to experimental challenges, which have been investigated at conditions far below those expected for the outer core. The lack of data on liquid properties and great challenges facing experimental investigations under relevant core conditions are expected to continue in the foreseeable future. This prompts the team to adopt a synergistic approach by integrating experiments at experimentally-achievable pressures with computations up to core conditions. The focus of this collaborative research will be on the elastic and viscoelastic properties of Fe-Ni-C liquids under high pressures through the synergy between experiment and theory. This approach for investigating liquid properties represents a potential methodology for studying liquid properties under extreme conditions, so as to speculate on the suitability of such combined efforts for similar high-pressure liquid state physics research. The proposed research offers a unique opportunity to engage graduate and undergraduate students to utilize state-of-the-art experimental techniques and computational tools at multi-scale facilities (departmental, university, and national laboratory) for solving fundamental problems in an active research area.The elastic and viscoelastic properties of Fe-Ni-C liquids will be investigated at high pressures by experimental techniques such as X-ray absorption, ultrasonic interferometry, X-ray diffraction, and X-ray viscometry, in combination with computational techniques, to establish a comprehensive mineral physics database on the density, sound velocity, viscosity, and structure of the liquids in a previously uncharted pressure-temperature-composition sector. The laboratory data will provide an important foundation on which the interpretation of ultrahigh pressure laboratory data and theoretical data will be based. The low-pressure data will be used to benchmark and validate results from theoretical calculations at low-pressure, and the higher-pressure calculation results will be used to estimate and predict liquid properties under core conditions. Such a methodology largely eliminates errors often induced in long extrapolations from low-pressure to core pressures, and identifies prospective biases in theoretical calculations. High pressure-temperature behaviors of the iron-rich liquids by the synergistic efforts from laboratory experiments and theoretical calculations will help improve our understanding of the physics and chemistry of the core. Stringent tests of carbon-rich core composition models for the outer core will be performed based on the liquid properties determined from this research. The outcome of the proposed projects, i.e., structure, density, sound velocity, and viscosity of core materials, will become essential parts of the study on carbon reservoirs and deep carbon cycle in the Earth and planetary interiors. The new experimental data could also be readily used in the discussion of planetary cores, such as the lunar core. The team is committed to disseminating the results through peer-reviewed journal publications and to publicizing their work to their local and greater communities through news releases, public lectures, and their research websites.
地球的核心是我们星球中最遥远,最动态的部分,由液态铁合金组成,其中心固化。核心的性质和动力学与多种地球物理问题密切相关,例如地幔对流的驱动力,地球杂志和行星进化。核心主要是铁(Fe),与5-10%的镍(Ni)合金,以及一些较轻的元素,例如硫(S),硅(Si),碳(C),氧气(O)和氢(H)。在相关的核心条件下,富含铁合金和液体的性质的知识是了解核心的组成,热状态和动力学的先决条件。与内核的结晶铁合金相比,由于实验挑战引起的铁富合金液体性能的数据显着缺乏,在远低于外核预期的条件下,这些数据已经进行了研究。在相关核心条件下,缺乏有关液体特性的数据和实验研究面临的巨大挑战,预计将在可预见的将来继续进行。这促使团队通过将实验性压力的实验与核心条件的计算相结合,采用协同方法。 这项协作研究的重点将放在Fe-Ni-C液体在高压下通过实验和理论之间的协同作用的弹性和粘弹性。这种研究液体特性的方法代表了一种在极端条件下研究液体特性的潜在方法,以推测这种联合努力对类似的高压液态物理学研究的适用性。拟议的研究提供了一个独特的机会,可以吸引研究生和本科生,以在多尺度设施(系,大学和国家实验室)在积极的研究领域中使用最先进的实验技术和计算工具来解决基本问题。 X射线衍射和X射线粘度法结合了计算技术,以在先前未知的压力 - 温度组成部门中建立液体的密度,声速,粘度和结构的全面矿物物理数据库。实验室数据将为超高压力实验室数据和理论数据的解释提供一个重要的基础。低压数据将用于基准和验证低压下理论计算的结果,并且将使用高压计算结果来估计和预测核心条件下的液体性质。这种方法在很大程度上消除了从低压到核心压力的长期推断中通常引起的错误,并确定了理论计算中的前瞻性偏见。通过实验室实验的协同努力和理论计算,富含铁的液体的高压温度行为将有助于提高我们对核心物理和化学的理解。根据本研究确定的液体性能,将对外核的富含碳核心组成模型进行严格测试。拟议项目的结果,即核心材料的结构,密度,声速和粘度,将成为有关碳储层和地球和行星内部深层碳循环的研究的重要组成部分。新的实验数据也可以很容易地用于对行星岩心(例如月球核心)的讨论。该团队致力于通过同行评审的期刊出版物来传播结果,并通过新闻发布,公开讲座和研究网站向本地和更大的社区宣传其工作。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure and Properties of Liquid Fe‐C Alloys at High Pressures by Experiments and First‐Principles Calculations
通过实验和第一性原理计算研究高压液态铁碳合金的结构和性能
  • DOI:
    10.1002/9781119508229.ch4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, B.;Wang, J.
  • 通讯作者:
    Wang, J.
Synthesis, Elasticity, and Spin State of an Intermediate MgSiO 3 ‐FeAlO 3 Bridgmanite: Implications for Iron in Earth's Lower Mantle
中间 MgSiO 3 →FeAlO 3 Bridgmanite 的合成、弹性和自旋态:对地球下地幔中铁的影响
  • DOI:
    10.1029/2020jb019964
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu, Feng;Liu, Jiachao;Lai, Xiaojing;Xiao, Yuming;Prakapenka, Vitali;Bi, Wenli;Alp, E. Ercan;Dera, Przemyslaw;Chen, Bin;Li, Jie
  • 通讯作者:
    Li, Jie
Density of Fe‐Ni‐C Liquids at High Pressures and Implications for Liquid Cores of Earth and the Moon
高压下 Fe-Ni-C 液体的密度及其对地球和月球液体核心的影响
  • DOI:
    10.1029/2020jb021089
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu, Feng;Lai, Xiaojing;Wang, Jianwei;Amulele, George;Kono, Yoshio;Shen, Guoyin;Jing, Zhicheng;Manghnani, Murli H.;Williams, Quentin;Chen, Bin
  • 通讯作者:
    Chen, Bin
Short- and Intermediate-Range Structure and Dynamics of Fe-Ni-C Liquid Under Compression
压缩下 Fe-Ni-C 液体的短程和中程结构与动力学
  • DOI:
    10.3389/feart.2019.00258
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wang, Jianwei;Chen, Bin;Williams, Quentin;Manghnani, Murli H.
  • 通讯作者:
    Manghnani, Murli H.
Experimental constraints on the sound velocities of cementite Fe3C to core pressures
  • DOI:
    10.1016/j.epsl.2018.05.002
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Bin Chen;X. Lai;Jie Li;Jiachao Liu;Jiyong Zhao;W. Bi;E. Ercan Alp;Michael Y. Hu;Yuming Xiao-Yuming
  • 通讯作者:
    Bin Chen;X. Lai;Jie Li;Jiachao Liu;Jiyong Zhao;W. Bi;E. Ercan Alp;Michael Y. Hu;Yuming Xiao-Yuming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Chen其他文献

Passive measurement method of tree diameter at breast height using a smartphone
使用智能手机被动测量树木胸径的方法
Surface heat transfer characteristics of R404A pulsed spray cooling with an expansion-chambered nozzle for laser dermatology
激光皮肤科用膨胀室喷嘴 R404A 脉冲喷雾冷却的表面传热特性
  • DOI:
    10.1016/j.ijrefrig.2015.08.016
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Rui Wang;Zhifu Zhou;Bin Chen;Feilong Bai;Guoxiang Wang
  • 通讯作者:
    Guoxiang Wang
Molecular dynamics simulations of dynamics mechanical behavior and interfacial microstructure evolution of Ni-based single crystal superalloys under shock loading
冲击载荷下镍基单晶高温合金动态力学行为和界面微观结构演化的分子动力学模拟
The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores
通过调节H聚集发色团之间的分子间电荷转移来工程化具有光电性能的芪唑鎓/碘铜酸盐杂化物
  • DOI:
    10.1039/c9qi01672d
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Wei Wu;Xiang-Ling Lin;Qian Liu;Yan He;You-Ren Huang;Bin Chen;Hao-Hong Li;Zhi-Rong Chen
  • 通讯作者:
    Zhi-Rong Chen
Periodontitis may impair the homeostasis of systemic bone through regulation of gut microbiota in ApoE-/- mice.
牙周炎可能通过调节 ApoE-/- 小鼠的肠道微生物群来损害全身骨的稳态。
  • DOI:
    10.1111/jcpe.13708
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Lili Li;Min Wang;J. Bao;Nannan Wang;Yuezhen Huang;Shasha He;Bin Chen;F. Yan
  • 通讯作者:
    F. Yan

Bin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Chen', 18)}}的其他基金

MRI RI-Track 2: Development of the Expanded Owens Valley Solar Array (EOVSA)-15--Major Upgrade of a Community Facility for Solar and Space Weather Physics
MRI RI-轨道 2:扩展欧文斯谷太阳能电池阵列 (EOVSA)-15 的开发——太阳能和空间天气物理社区设施的重大升级
  • 批准号:
    2320478
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
  • 批准号:
    2229338
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
  • 批准号:
    2108853
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Structure and thermal elastic properties of calcium silicate perovskite
硅酸钙钛矿的结构与热弹性性能
  • 批准号:
    2127807
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Laboratory Technician Support: Experimental Mineral Physics and Petrology Facilities at the University of Hawaii at Manoa
实验室技术人员支持:夏威夷大学马诺阿分校的实验矿物物理和岩石学设施
  • 批准号:
    1829273
  • 财政年份:
    2018
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE--Magnetic Energy Release During Solar Eruptions - From Large to Small Scales
合作研究:SHINE——太阳喷发期间的磁能释放——从大尺度到小尺度
  • 批准号:
    1723436
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Probing Energy Release in Solar Explosive Events with New Generation Radio Telescopes
职业:用新一代射电望远镜探测太阳爆炸事件中的能量释放
  • 批准号:
    1654382
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Electron Acceleration and Emissions from the Solar Flare Termination Shock
合作研究:太阳耀斑终止激波的电子加速和发射
  • 批准号:
    1735405
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Elasticity and Lattice Dynamics of Iron Alloys under Earth's Core Conditions
职业:地球核心条件下铁合金的弹性和晶格动力学
  • 批准号:
    1555388
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CDI-Type I: Collaborative Research: Development of computational algorithms and analysis tools for molecular-level understanding of complex atmospheric nucleation processes
CDI-I 型:合作研究:开发计算算法和分析工具,以在分子水平上理解复杂的大气成核过程
  • 批准号:
    1052015
  • 财政年份:
    2010
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了