How FGF Receptor Signaling Drives Homeostatic Neuroplasticity

FGF 受体信号如何驱动稳态神经可塑性

基本信息

  • 批准号:
    1557792
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The ability of cells to monitor the environment and adjust their structure and function in order to best maintain all of the physiological properties that support their existence (homeostasis) is a fundamental property of all biological systems. Cells in animal nervous systems are no exception; they need to constantly change their signaling connections with other cells (synapses) in brain circuits in response to both normal environmental changes and to physiological challenges such as toxins, so that brain function can be homeostatically maintained within a physiologically appropriate range. However, we currently have a very poor understanding of the basic biological mechanisms underlying the homeostatic regulation of cell-to-cell communication that affects brain circuitry. This project uses genetic tools uniquely available in the fruitfly Drosophila melanogaster together with electrical recordings, biochemical techniques, synapse imaging by microscopy, and drug manipulations to understand how a newly-identified molecular factor in fruitfly muscles (called Heartless/Fibroblast Growth Factor Receptor tyrosine kinase [Htl/FGFR]) homeostatically controls the level of activity in the motor nerve cells that cause these same muscles to contract. This research will precisely elucidate what causes this muscle-specific molecule to become biologically active, and how it signals its activity backwards in this circuit to affect the activity of the nerve cells that control muscles. This research plan also integrates a variety of educational activities at multiple levels, including: 1) an ongoing research and educational collaboration with a faculty member at a nearby primarily undergraduate institution (PUI); 2) a yearly three-day summer workshop designed by the principal investigator (PI) to expand neuroscience research resources for PUIs; 3) K-12 STEM public outreach in Iowa through tours of the PI's lab and school visits by the PI and his graduate students; and 4) long- and short-term research opportunities for undergraduates, including underrepresented minority students enrolled in programs such as the SROP/McNair Scholars Program at the University of Iowa.Homeostatic forms of synaptic plasticity direct synapses and circuits to maintain normal ranges of output, despite the perturbations they may experience throughout life. A significant unknown is the molecular underpinning of the homeostatic regulation of synapse function. The PI's lab addresses this problem utilizing the Drosophila melanogaster neuromuscular junction (NMJ) as a model. At the NMJ, impaired muscle excitability is corrected by offsetting, homeostatic increases in presynaptic neurotransmitter release. Precisely how the muscle communicates a need for increased neurotransmitter release is not understood. Similar forms of regulation have been found in the mammalian central and peripheral nervous systems, and they are not understood either. Using Drosophila genetics and electrophysiology, the PI's lab has identified new molecules that illuminate signaling events controlling synaptic homeostasis. One molecule forms the basis for this project, a Fibroblast Growth Factor Receptor (FGFR) tyrosine kinase. Data from the lab support muscle-specific roles for FGFR. The central hypothesis is that muscle-derived FGFR activity tunes synaptic strength by mediating both anterograde (nerve-to-muscle) and retrograde (muscle-to-nerve) cell-cell signals. There are two specific aims. Aim 1 will determine the molecular signals in the muscle triggered by FGFR during the execution of homeostatic compensation. This aim includes experiments that will identify direct targets, as well as the retrograde signal(s) activated by those targets. Aim 2 will determine how homeostatic FGFR signaling is activated and regulated. Both aims will employ a combination of electrophysiology, biochemistry, synapse imaging, and pharmacology.
细胞监测环境并调整其结构和功能以最好地维持支持其存在的所有生理特性(稳态)的能力是所有生物系统的基本特性。动物神经系统中的细胞也不例外;它们需要不断改变它们与大脑回路中其他细胞(突触)的信号连接,以应对正常环境变化和毒素等生理挑战,以便大脑功能能够在生理上保持平衡。然而,我们目前对影响脑回路的细胞间通讯的稳态调节的基本生物学机制的理解非常有限。该项目使用果蝇中唯一可用的遗传工具,以及电子记录,生化技术,显微镜下的突触成像,以及药物操作来了解果蝇肌肉中一种新发现的分子因子(称为Heartless/Fibroblast Growth Factor Receptor tyrosine kinase [Htl/FGFR])自我平衡地控制着运动神经细胞的活动水平,从而使这些肌肉收缩。这项研究将精确地阐明是什么导致这种肌肉特异性分子变得具有生物活性,以及它如何在这个回路中向后传递信号以影响控制肌肉的神经细胞的活动。该研究计划还整合了多层次的各种教育活动,包括:1)与附近主要本科院校(PUI)的教职员工进行持续的研究和教育合作; 2)由主要研究者(PI)设计的为期三天的夏季研讨会,以扩大PUI的神经科学研究资源; 3)通过PI及其研究生的PI实验室和学校访问的图尔斯之旅,在爱荷华州开展K-12 STEM公共宣传;四是为本科生提供长期和短期的研究机会,包括参加SROP/爱荷华州大学McNair学者项目的研究人员说,突触可塑性的稳态形式指导突触和回路维持正常的输出范围,尽管它们在一生中可能会经历扰动。一个重要的未知是突触功能的稳态调节的分子基础。PI的实验室利用果蝇神经肌肉接头(NMJ)作为模型来解决这个问题。在NMJ,受损的肌肉兴奋性通过抵消突触前神经递质释放的稳态增加来校正。肌肉如何准确地传达增加神经递质释放的需要尚不清楚。在哺乳动物的中枢和外周神经系统中也发现了类似的调节形式,但它们也不清楚。利用果蝇遗传学和电生理学,PI的实验室已经确定了新的分子,阐明控制突触稳态的信号事件。一种分子形成了这个项目的基础,成纤维细胞生长因子受体(FGFR)酪氨酸激酶。实验室的数据支持FGFR的肌肉特异性作用。核心假设是肌肉来源的FGFR活性通过介导顺行(神经到肌肉)和逆行(肌肉到神经)细胞-细胞信号来调节突触强度。有两个具体目标。目的1将确定在执行稳态补偿期间由FGFR触发的肌肉中的分子信号。这一目标包括识别直接靶点以及由这些靶点激活的逆行信号的实验。目的2将确定稳态FGFR信号是如何被激活和调节的。这两个目标将采用电生理学,生物化学,突触成像和药理学的组合。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C. Andrew Frank其他文献

C. Andrew Frank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

RNF181通过稳定FGF2蛋白表达促进胃癌5-FU耐药的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
FGF21通过CTL1介导的胆碱稳态调控线粒体自噬对帕金森病的保护机制研究
  • 批准号:
    MS25H310003
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
FGF21/NRF2/PSMB5调控线粒体稳态在儿童川崎病免疫性冠状动脉损伤中的作用机制
  • 批准号:
    2025JJ80990
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
心梗后心肌释放的细胞外囊泡通过上调 肝脏FGF21促进损伤心肌修复
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
肝细胞癌微环境中FGF19激活PPARγ促进Treg免疫抑制功能的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于可溶性α-Klotho/FGF23/Wnt通路研究肾元颗粒调控糖尿病肾病骨代谢异常的分子机制
  • 批准号:
    JCZRLH202500209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
FGF9调控骨髓间充质干细胞谱系分化促进骨髓脂肪化导致老年骨质疏松的机制和应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
牙依附性Foxq1-Fgf10信号通路协同纳米 抑菌水凝胶促进牙槽骨再生的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
载MSCs-Exo-FGF21透明质酸水凝胶调控小胶质细胞极化促进脊髓损伤修复的机制研究
  • 批准号:
    2025JJ60566
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
FGF23-Klotho信号通路在有氧运动改善肥胖相关性肾病的分子机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Functional analysis of a novel soluble FGF receptor from bone and cartilage and application to osteochondral regeneration
骨和软骨中新型可溶性 FGF 受体的功能分析及其在骨软骨再生中的应用
  • 批准号:
    17K11804
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FGF Receptor Structure, Dynamics and Function
FGF 受体结构、动力学和功能
  • 批准号:
    9985425
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
The cross-signaling of FGF receptor and integrin in cancer invasion and metastasis.
FGF 受体和整合素在癌症侵袭和转移中的交叉信号传导。
  • 批准号:
    17K08775
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FGF Receptor Structure, Dynamics and Function
FGF 受体结构、动力学和功能
  • 批准号:
    9239910
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
Localized FGF-receptor signaling controls differentiation of wrapping glial cells of Drosophila
局部 FGF 受体信号传导控制果蝇包裹神经胶质细胞的分化
  • 批准号:
    316508230
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grants
Cross-talk between FGF receptor and integrin in breast cancer invasion and metastasis.
FGF 受体与整合素在乳腺癌侵袭和转移中的相互作用。
  • 批准号:
    26460471
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of FGF Receptor Regulation and Signaling
FGF 受体调节和信号转导机制
  • 批准号:
    8727233
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
Regulation of FGF receptor 1 by Nedd4
Nedd4 对 FGF 受体 1 的调节
  • 批准号:
    280106
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Operating Grants
The effect of antidepressant on Fibroblast growth factor (FGF) receptor, as a novel therapeutic target for major depression.
抗抑郁药对成纤维细胞生长因子(FGF)受体的影响,作为重度抑郁症的新治疗靶点。
  • 批准号:
    23790297
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Monoclonal Antibody to FGF Receptor 2 for Treatment of Gastric and Other Cancers
用于治疗胃癌和其他癌症的 FGF 受体 2 单克隆抗体
  • 批准号:
    7744743
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了