Collaborative Research: Neural Mechanisms of Active Sensing
合作研究:主动感知的神经机制
基本信息
- 批准号:1557858
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Animals, including humans, routinely use movement to sense the world around them. For example, to sense the texture of an object, a person might move her hand over the surface, whereas to measure the object's weight, she might hold it in her palm and move it up and down. This use of different movements to sense features of the environment is called Active Sensing. Although active sensing is commonplace in human behavior, how the brain generates and controls these movements is poorly understood. The goal of this project is to reveal and describe (in mathematical equations) the brain's strategies for active sensing. This will be achieved by studying a specialized animal species, the weakly electric glass knifefish. This animal was chosen because it has a suite of properties that make it ideally suited for the experimental approach. The expected findings will have broad implications for active sensing in other animals (including humans) because active sensing behaviors are similar across species. This work will have broad societal impacts, including the possible transformation of robotic control systems and enhanced understanding of the brain that may ultimately improve our understanding of neurological disorders. Further this work includes multidisciplinary training of promising students in critical STEM fields.The central hypothesis for this research is that organisms adjust active movements in order to tune the resulting sensory feedback to match processing features of CNS circuits. This is a challenging problem because sensory inputs and motor outputs are linked by a closed loop. The experimental approach overcomes this challenge by (1) exploiting unique features of a well-suited model system, weakly electric fishes, (2) developing a closed-loop behavioral control system, and (3) performing chronic neurophysiological recordings in freely swimming fish. This integrated approach will enable the quantification of neuromechanical control strategies that organisms use to produce and modulate movements for active sensing, identification of cellular and synaptic mechanisms underlying neural responses to feedback from active movements, and discovery of how these changes in active movements affect sensorimotor integration in midbrain circuits.
包括人类在内的动物通常使用运动来感知周围的世界。例如,为了感知物体的质地,一个人可能会在表面上移动她的手,而为了测量物体的重量,她可能会把它放在手掌中并上下移动。这种使用不同的运动来感知环境特征的方法被称为主动感知。虽然主动感知在人类行为中很常见,但大脑如何产生和控制这些运动却知之甚少。 这个项目的目标是揭示和描述(在数学方程)大脑的主动感知策略。这将通过研究一种特殊的动物物种--弱电玻璃刀鱼来实现。选择这种动物是因为它具有一系列特性,使其非常适合实验方法。预期的发现将对其他动物(包括人类)的主动感知产生广泛的影响,因为不同物种的主动感知行为是相似的。这项工作将产生广泛的社会影响,包括机器人控制系统的可能转型和对大脑的进一步了解,最终可能会提高我们对神经系统疾病的理解。这项研究的中心假设是,生物体调整主动运动,以调整产生的感觉反馈,以匹配中枢神经系统电路的处理功能。这是一个具有挑战性的问题,因为感觉输入和运动输出是通过闭环连接的。实验方法克服了这一挑战,(1)利用一个非常适合的模型系统,弱电鱼的独特功能,(2)开发一个闭环行为控制系统,(3)在自由游动的鱼进行慢性神经生理记录。 这种综合方法将使生物体用于产生和调节主动感知运动的神经机械控制策略的量化,识别对主动运动反馈的神经反应的细胞和突触机制,以及发现主动运动中的这些变化如何影响中脑回路中的感觉运动整合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Cowan其他文献
Noah Cowan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Cowan', 18)}}的其他基金
Collaborative Research: Identifying Model-Based Motor Control Strategies to Enhance Human-Machine Interaction
协作研究:确定基于模型的电机控制策略以增强人机交互
- 批准号:
1825489 - 财政年份:2018
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Rules for Human Rhythmic Motor Coordination
合作研究:了解人类节律运动协调的规则
- 批准号:
1230493 - 财政年份:2012
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Sensory Guidance of Locomotion: From Neurons to Newton's Laws
职业:运动的感觉引导:从神经元到牛顿定律
- 批准号:
0845749 - 财政年份:2009
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Active Cannulas for Bio-Sensing and Surgery
用于生物传感和手术的主动插管
- 批准号:
0651803 - 财政年份:2007
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SGER: Vision-Based Control of Mechanical Systems via Spatial Sampling Kernels
SGER:通过空间采样内核对机械系统进行基于视觉的控制
- 批准号:
0625708 - 财政年份:2006
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
ASM: Multi-Sensory Control of Tracking Behavior in Weakly Electric Fish
ASM:弱电鱼跟踪行为的多感官控制
- 批准号:
0543985 - 财政年份:2006
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2311468 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant