SGER: Vision-Based Control of Mechanical Systems via Spatial Sampling Kernels
SGER:通过空间采样内核对机械系统进行基于视觉的控制
基本信息
- 批准号:0625708
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vision-based control exemplifies problems in which complex high-dimensional data must be transformed into meaningful action, a fundamental problem in control systems theory. In typical vision-based control systems, information in the visual signal is abstracted and sent to a control algorithm as a geometric measurement. This framework, predicated on the a priori collapse of information-rich visual signals to a few image coordinates, relies on infallible visual tracking and perfect feature correspondence. While conceptually convenient, this approach is fundamentally limited. This project aims to create a unified approach to vision-based control that directly utilizes the underlying visual signals, not simply visual geometry. The approach combines spatial sampling kernels with Lyapunov stability theory. These techniques will facilitate the design of provably stable vision-based control systems for wide classes of visual signals, geometric motions, and system dynamics. How does one convert high-dimensional data into useful action? The answer lies in the ability to distill massive amounts of data for example, a video stream into to low-dimensional, task-specific information for example, robotic movements in real time. This project seeks to develop a scientific basis for the efficient reduction of complex data streams into effective action. In particular, this project uses vision-based control to investigate new mathematical methods for collapsing complex signals in a task-specific way that admits clear analysis and provable performance. Central to the research is the idea that the connection between information processing and control need-not be ad hoc; instead, mathematical theorems that link information to action can provide performance guarantees under real-world circumstances.
基于视觉的控制解决了复杂的高维数据必须转化为有意义的行为的问题,这是控制系统理论中的一个基本问题。在典型的基于视觉的控制系统中,视觉信号中的信息被提取并作为几何测量发送到控制算法。这个框架,基于先验的信息丰富的视觉信号的几个图像坐标的崩溃,依赖于可靠的视觉跟踪和完美的特征对应。虽然概念上方便,但这种方法从根本上是有限的。该项目旨在创建一种统一的基于视觉的控制方法,直接利用底层视觉信号,而不仅仅是视觉几何。该方法结合了空间采样核和李雅普诺夫稳定性理论。这些技术将促进可证明稳定的视觉为基础的控制系统的设计,广泛的视觉信号,几何运动和系统动力学。如何将高维数据转换为有用的操作?答案在于将大量数据(例如,视频流)提取为低维特定任务信息(例如,真实的机器人运动)的能力。该项目旨在为有效减少复杂的数据流并将其转化为有效行动奠定科学基础。特别是,该项目使用基于视觉的控制来研究新的数学方法,以特定于任务的方式来折叠复杂信号,从而实现清晰的分析和可证明的性能。这项研究的核心思想是,信息处理和控制之间的联系不需要是特设的;相反,将信息与行动联系起来的数学定理可以在现实世界的情况下提供性能保证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Cowan其他文献
Noah Cowan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Cowan', 18)}}的其他基金
Collaborative Research: Identifying Model-Based Motor Control Strategies to Enhance Human-Machine Interaction
协作研究:确定基于模型的电机控制策略以增强人机交互
- 批准号:
1825489 - 财政年份:2018
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Collaborative Research: Neural Mechanisms of Active Sensing
合作研究:主动感知的神经机制
- 批准号:
1557858 - 财政年份:2016
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Rules for Human Rhythmic Motor Coordination
合作研究:了解人类节律运动协调的规则
- 批准号:
1230493 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
CAREER: Sensory Guidance of Locomotion: From Neurons to Newton's Laws
职业:运动的感觉引导:从神经元到牛顿定律
- 批准号:
0845749 - 财政年份:2009
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
Active Cannulas for Bio-Sensing and Surgery
用于生物传感和手术的主动插管
- 批准号:
0651803 - 财政年份:2007
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
ASM: Multi-Sensory Control of Tracking Behavior in Weakly Electric Fish
ASM:弱电鱼跟踪行为的多感官控制
- 批准号:
0543985 - 财政年份:2006
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
- 批准号:
23KF0241 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Evolutionary study of primate olfaction, taste and color-vision sensor genes by targeted capture and cell-culture-based functional assay
通过靶向捕获和基于细胞培养的功能测定对灵长类动物嗅觉、味觉和色觉传感器基因的进化研究
- 批准号:
23H02561 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of high-speed random access vision principle based on mirror array
基于镜面阵列的高速随机存取视觉原理研制
- 批准号:
23K18473 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
- 批准号:
23H01487 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
- 批准号:
2331763 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
I-Corps: Computer Vision-Based Intelligent Service Recommendation System
I-Corps:基于计算机视觉的智能服务推荐系统
- 批准号:
2223872 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
- 批准号:
RGPIN-2017-05638 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Discovery Grants Program - Individual
Vision-based pain detection in masked faces
基于视觉的蒙面面部疼痛检测
- 批准号:
572495-2022 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
University Undergraduate Student Research Awards