Collaborative Research: Biomineralization Processes and their Environmental Modulation in Marine Bivalves
合作研究:海洋双壳类生物矿化过程及其环境调节
基本信息
- 批准号:1557870
- 负责人:
- 金额:$ 38.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bivalve mollusks such as oysters and clams are ecosystem engineers and important economic resources in estuaries. Bivalves build shells from calcium carbonate (CaCO3), which protect them from predators and environmental stressors and are essential for survival. Mollusks' shells, produced from precursors abundant in the seawater, have unique mechanical properties that make them superior to geological CaCO3. However, they are energetically costly to deposit and can be eroded under corrosive conditions of low salinity, high concentrations of carbon dioxide (CO2) and low pH, characteristic of estuarine waters. Recent studies show that biomineralization of marine bivalves is impaired by prolonged exposure to the moderately elevated CO2 levels (800-2000 ppm), which appears paradoxical since thriving bivalve populations are found in estuaries with a broad range of CO2 levels (400-10,000 ppm). Another recently discovered conundrum is that some mollusks with shells made of the more soluble aragonite are less affected by elevated CO2 levels than those with the shells made of less soluble calcite. These findings challenge the current paradigm in biomineralization and indicate that interactions between the environment and biological controls of biomineralization are more complex than currently recognized. To close this gap in knowledge, the investigators will determine the molecular and cellular mechanisms of biomineralization in mollusks with shells made of different types of CaCO3, assess how these mechanisms are affected by seawater chemistry and identify physiological and energetic constraints on biomineralization in potentially corrosive estuarine waters. The project involves development of an interdisciplinary BioCADRE program for training of undergraduate students, training and mentorship of post-doctoral researchers, and fostering of interdisciplinary collaborations between the University of Pittsburgh and University of North Carolina at Charlotte.This study focuses on the biological mechanisms of mineralization in two keystone bivalve species, Crassostrea gigas and Mercenaria mercenaria with calcitic and aragonitic shells, respectively. The PIs will test the hypotheses that hemocytes and mantle cells utilize different molecular mechanisms of mineral sequestration and transport and that species-specific differences in biomineralization mechanisms contribute to different abilities of these bivalves to build shells at low CaCO3 saturation levels. The PIs will assess how salinity and CO2 levels affect sequestration, transport and deposition of the mineral as well as expression and activity of the proteins involved in matrix formation and acid-base balance. The PIs will determine whether successful biomineralization at low CaCO3 saturation levels leads to elevated costs of basal maintenance and trade-offs between biomineralization and other energy-dependent functions. These studies will elucidate how cellular, molecular and whole-organism processes are orchestrated to support active mineral deposition in a wide range of CaCO3 saturation levels, determine what mechanisms compensate for higher mineral solubility during exposure to hypercapnia and low salinity and assess whether these mechanisms are more effective in aragonite-depositing than calcite-depositing mollusks. This project builds on previous successful collaborations between a biomineralization expert and a mollusk physiologist and has the material and intellectual resources required for its success.
牡蛎、蛤蜊等双壳软体动物是河口的生态系统工程师和重要的经济资源。双壳类由碳酸钙(CaCO 3)建造外壳,这可以保护它们免受捕食者和环境压力的影响,对生存至关重要。软体动物的贝壳是由海水中丰富的前体物质制成的,具有独特的机械性能,使其上级于地质碳酸钙。然而,它们存款的能量成本很高,并且在河口沃茨特有的低盐度、高浓度二氧化碳(CO2)和低pH值的腐蚀性条件下会被侵蚀。最近的研究表明,海洋双壳类的生物矿化受到长期暴露于适度升高的CO2水平(800-2000 ppm)的损害,这似乎是自相矛盾的,因为在宽范围的CO2水平(400- 10,000 ppm)的河口发现了繁荣的双壳类种群。最近发现的另一个难题是,一些由可溶性更高的文石制成的贝壳的软体动物比那些由可溶性较低的方解石制成的贝壳受二氧化碳水平升高的影响更小。这些发现挑战了目前的生物矿化模式,并表明环境和生物矿化的生物控制之间的相互作用比目前认识到的更复杂。为了弥补这一知识空白,研究人员将确定软体动物生物矿化的分子和细胞机制,这些机制由不同类型的碳酸钙制成,评估这些机制如何受到海水化学的影响,并确定潜在腐蚀性河口沃茨生物矿化的生理和能量限制。该项目包括开发一个跨学科的BioCADRE项目,用于培养本科生,培训和指导博士后研究人员,并促进匹兹堡大学和北卡罗来纳州大学夏洛特之间的跨学科合作。本研究的重点是两个关键的双壳类物种,长牡蛎(Crassostrea gigas)和长牡蛎(Mercenaria mesicaria)的矿化生物学机制,分别PI将测试的假设,血细胞和外套膜细胞利用不同的分子机制的矿物封存和运输,物种特异性差异的生物矿化机制有助于这些双壳类的不同能力,以建立在低碳酸钙饱和度水平的外壳。PI将评估盐度和CO2水平如何影响矿物的螯合,运输和沉积以及参与基质形成和酸碱平衡的蛋白质的表达和活性。PI将确定在低CaCO 3饱和度水平下成功的生物矿化是否会导致基础维护成本升高以及生物矿化与其他能量依赖功能之间的权衡。这些研究将阐明细胞,分子和整个生物体的过程是如何协调,以支持活性矿物沉积在广泛的碳酸钙饱和度水平,确定什么机制补偿较高的矿物溶解度在暴露于高碳酸血症和低盐度,并评估这些机制是否更有效的文石沉积比方解石沉积软体动物。该项目建立在生物矿化专家和软体动物生理学家之间先前成功合作的基础上,并拥有成功所需的物质和智力资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Reitzel其他文献
Adam Reitzel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Reitzel', 18)}}的其他基金
RoL: NSFDEB-BSF: Studying the evolution of the antiviral pathway in a cnidarian model interacting with diverse viral communities
RoL:NSFDEB-BSF:研究与不同病毒群落相互作用的刺胞动物模型中抗病毒途径的进化
- 批准号:
2044826 - 财政年份:2021
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Dispersal, connectivity and local adaptation along an extreme environmental gradient
沿着极端环境梯度的分散、连通性和局部适应
- 批准号:
1924498 - 财政年份:2019
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Toxin expression and function by an estuarine model species in a dynamic seasonal community
动态季节性群落中河口模型物种的毒素表达和功能
- 批准号:
1536530 - 财政年份:2015
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
EAGER: Systems Approach to Determine Adaptive Mechanisms of Thermal Tolerance in a Model Ectotherm
EAGER:确定变温模型耐热适应性机制的系统方法
- 批准号:
1545539 - 财政年份:2015
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: How bacteria control manganese(IV) oxide biomineralization using a multicopper oxidase complex
合作研究:细菌如何使用多铜氧化酶复合物控制氧化锰(IV)生物矿化
- 批准号:
2120408 - 财政年份:2021
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Mechanism of Manganese(IV) Oxide Biomineralization by a Bacterial Manganese Oxidase
合作研究:细菌锰氧化酶生物矿化锰(IV)氧化物的机制
- 批准号:
2122086 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanism of Manganese(IV) Oxide Biomineralization by a Bacterial Manganese Oxidase
合作研究:细菌锰氧化酶生物矿化锰(IV)氧化物的机制
- 批准号:
1951498 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanism of Manganese(IV) Oxide Biomineralization by a Bacterial Manganese Oxidase
合作研究:细菌锰氧化酶生物矿化锰(IV)氧化物的机制
- 批准号:
1951143 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: How bacteria control manganese(IV) oxide biomineralization using a multicopper oxidase complex
合作研究:细菌如何使用多铜氧化酶复合物控制氧化锰(IV)生物矿化
- 批准号:
1807222 - 财政年份:2018
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: How bacteria control manganese(IV) oxide biomineralization using a multicopper oxidase complex
合作研究:细菌如何使用多铜氧化酶复合物控制氧化锰(IV)生物矿化
- 批准号:
1807158 - 财政年份:2018
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Biomineralization Processes and their Environmental Modulation in Marine Bivalves
合作研究:海洋双壳类生物矿化过程及其环境调节
- 批准号:
1557551 - 财政年份:2016
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: Bacterial manganese(IV) oxide biomineralization: Mechanism of Mn(II,III) oxidation by the multicopper oxidase complex
合作研究:细菌氧化锰(IV)生物矿化:多铜氧化酶复合物氧化锰(II,III)的机制
- 批准号:
1410353 - 财政年份:2014
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: Marine priming effect - molecular mechanisms for the biomineralization of terrigenous dissolved organic matter in the ocean
合作研究:海洋启动效应——海洋中陆源溶解有机物生物矿化的分子机制
- 批准号:
1357242 - 财政年份:2014
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Marine priming effect - molecular mechanisms for the biomineralization of terrigenous dissolved organic matter in the ocean
合作研究:海洋启动效应——海洋中陆源溶解有机物生物矿化的分子机制
- 批准号:
1357134 - 财政年份:2014
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant