Collaborative Research: Predicting the Spatiotemporal Distribution of Metabolic Function in the Global Ocean
合作研究:预测全球海洋代谢功能的时空分布
基本信息
- 批准号:1558710
- 负责人:
- 金额:$ 51.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Predicting how marine chemistry and biology will respond to global change is a pressing issue for society. This project will develop new modeling techniques for predicting such changes using ideas derived from physics in the subdiscipline of thermodynamics that concerns how energy moves in a system. Recent advancements in the thermodynamics of systems that change over time indicate that systems will internally organize so as to maximize the flow and dissipation of energy. For example, the temperature difference that develops between the ocean and atmosphere over the summer drives the formation of hurricanes (the organized structures) whose presence hastens the dissipation of the temperature difference. This project utilizes this fundamental property but extends it to microbial communities, such as bacteria and phytoplankton, which form the base of the ocean food web and strongly influence ocean chemistry. Based on information on how biology utilizes solar and chemical energy to construct itself from carbon, nitrogen, phosphorus and other elements in the environment, the model can predict how metabolic functions, such as photosynthesis or nitrogen fixation from the atmosphere, are expressed over time and space within the ocean. These predictions can be compared to existing oceanographic observations, including newly developed techniques that rely on DNA and RNA sequencing to determine metabolic function of the microbial community. This project will support one postdoctoral scholar in this new interface between ocean biogeochemistry modeling, thermodynamics and molecular observations. The project will also support summer internships as part of the Woods Hole Partnership Education Program, a consortium of institutions committed to increasing student diversity in Woods Hole, as well as support two independent undergraduate research projects per year as part of the Semester in Environmental Science Program at the Marine Biological Laboratory (MBL). A workshop will be held in year 2 of the project to broaden exposure of thermodynamic approaches in marine biogeochemistry and explore its place in the broader context of recent advances in metabolic modeling and theory. Ocean model code developed during the project will be open source and publicly disseminated.This project builds upon the Darwin Project, a trait and selection based modeling approach for describing marine plankton communities and biogeochemical cycles. The approach relies on local competition to select from a diverse population and determines the functional characteristics of microorganisms that mediate biogeochemical cycles. The project will combine this selection-based modeling approach with a distributed metabolic network perspective previously developed to facilitate calculating reaction thermodynamics. This will provide mechanistic and quantitative description of key metabolic functions and allow the new model to be directly mappable to omics-based observations. The project will utilize new modeling design criteria based on the maximum entropy production (MEP) conjecture to determine allocation of metabolic machinery and its expression, such as metabolic switching between nitrogen fixation and ammonium uptake. Model testing will rely on existing oceanographic surveys and observations. Once validated, the coupled model will be used to investigate losses of functional biodiversity, generalist versus specialists, temporal planktonic strategies as well as losses in community complementarity on ecosystem biogeochemistry. A significant output from the project will be a predicted global biogeography map of metabolic function and expression (such as nitrogen fixation and ammonium oxidation) that can be tested with, and used to interpret, directed omics observations.
预测海洋化学和生物学将如何应对全球变化是社会面临的紧迫问题。 该项目将开发新的建模技术,利用热力学子学科中涉及能量如何在系统中移动的物理学思想来预测此类变化。 随着时间的推移而变化的系统热力学的最新进展表明,系统将进行内部组织,以最大限度地提高能量的流动和耗散。 例如,夏季海洋和大气之间产生的温差会导致飓风(有组织的结构)的形成,而飓风的存在会加速温差的消散。 该项目利用了这一基本特性,但将其扩展到微生物群落,例如细菌和浮游植物,它们构成了海洋食物网的基础,并强烈影响海洋化学。基于生物学如何利用太阳能和化学能从环境中的碳、氮、磷和其他元素构建自身的信息,该模型可以预测代谢功能(例如光合作用或来自大气的固氮)如何随着时间和空间在海洋中表达。 这些预测可以与现有的海洋学观测结果进行比较,包括依赖 DNA 和 RNA 测序来确定微生物群落代谢功能的新开发技术。 该项目将支持一名博士后学者研究海洋生物地球化学建模、热力学和分子观测之间的新界面。 该项目还将支持暑期实习,作为伍兹霍尔合作教育计划的一部分,该计划是一个致力于增加伍兹霍尔学生多样性的机构联盟,并支持每年两个独立的本科生研究项目,作为海洋生物实验室(MBL)环境科学学期项目的一部分。 该项目的第二年将举办一次研讨会,以扩大海洋生物地球化学中热力学方法的接触范围,并探讨其在代谢模型和理论最新进展的更广泛背景下的地位。 该项目期间开发的海洋模型代码将开源并公开传播。该项目建立在达尔文项目的基础上,达尔文项目是一种基于特征和选择的建模方法,用于描述海洋浮游生物群落和生物地球化学循环。该方法依靠局部竞争从不同的种群中进行选择,并确定介导生物地球化学循环的微生物的功能特征。 该项目将把这种基于选择的建模方法与先前开发的分布式代谢网络视角相结合,以促进反应热力学的计算。这将为关键代谢功能提供机制和定量描述,并使新模型可以直接映射到基于组学的观察。 该项目将利用基于最大熵产生(MEP)猜想的新建模设计标准来确定代谢机制的分配及其表达,例如固氮和铵吸收之间的代谢切换。模型测试将依赖于现有的海洋学调查和观测。一旦经过验证,耦合模型将用于调查功能性生物多样性的损失、通才与专家、时间浮游策略以及生态系统生物地球化学的群落互补性损失。该项目的一个重要成果将是预测代谢功能和表达(例如固氮和氨氧化)的全球生物地理学图,该图可以通过定向组学观察进行测试并用于解释。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using maximum entropy production to describe microbial biogeochemistry over time and space in a meromictic pond
- DOI:10.3389/fenvs.2018.00100
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:J. Vallino;J. Huber
- 通讯作者:J. Vallino;J. Huber
Diel light cycles affect phytoplankton competition in the global ocean
- DOI:10.1111/geb.13562
- 发表时间:2022-07-02
- 期刊:
- 影响因子:6.4
- 作者:Tsakalakis,Ioannis;Follows,Michael J.;Vallino,Joseph J.
- 通讯作者:Vallino,Joseph J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Vallino其他文献
Processing watershed‐derived nitrogen in a well‐flushed New England estuary
在冲洗良好的新英格兰河口处理流域产生的氮
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Craig R. Tobias;Matthew Cieri;Bruce J. Peterson;L. Deegan;Joseph Vallino;Jeffrey Hughes - 通讯作者:
Jeffrey Hughes
Joseph Vallino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Vallino', 18)}}的其他基金
EAGER SitS: Developing a Next Generation Modeling Approach for Predicting Microbial Processes in Soil
EAGER SitS:开发下一代建模方法来预测土壤中的微生物过程
- 批准号:
1841599 - 财政年份:2019
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Investigating the connectivity of microbial food webs using thermodynamic models, stable isotope probing and genomics
使用热力学模型、稳定同位素探测和基因组学研究微生物食物网的连通性
- 批准号:
1655552 - 财政年份:2017
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Application of thermodynamic theory for predicting microbial biogeochemistry
热力学理论在预测微生物生物地球化学中的应用
- 批准号:
1451356 - 财政年份:2015
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: Environmental Controls on Anammox and Denitrification Rates in Estuarine and Marine Sediments
合作研究:河口和海洋沉积物中厌氧氨氧化和反硝化率的环境控制
- 批准号:
0852263 - 财政年份:2009
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Theory: Biological systems organize to maximize entropy production subject to information and biophysicochemical constraints
理论:生物系统在信息和生物物理化学约束下组织起来最大化熵产生
- 批准号:
0928742 - 财政年份:2009
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Modeling Microbial Biogeochemistry in Permeable Reactive Barriers
模拟可渗透反应屏障中的微生物生物地球化学
- 批准号:
0756562 - 财政年份:2008
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: Benthic Microalgal Regulation of Carbon and Nitrogen Turnover in Land Margin Ecosystems: A Dual Stable Isotope Tracer Approach
合作研究:陆地边缘生态系统中碳和氮周转的底栖微藻调节:双稳定同位素示踪剂方法
- 批准号:
0542682 - 财政年份:2006
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330759 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343204 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343203 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330760 - 财政年份:2024
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310356 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: MODEL ENABLED MACHINE LEARNING (MnML) FOR PREDICTING ECOSYSTEM REGIME SHIFTS
合作研究:用于预测生态系统制度转变的模型机器学习 (MnML)
- 批准号:
2233983 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Standard Grant
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
- 批准号:
2311075 - 财政年份:2023
- 资助金额:
$ 51.09万 - 项目类别:
Continuing Grant