Application of thermodynamic theory for predicting microbial biogeochemistry
热力学理论在预测微生物生物地球化学中的应用
基本信息
- 批准号:1451356
- 负责人:
- 金额:$ 20.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most of the elements critical for life on Earth, such as nitrogen, carbon, phosphorous, sulfur and many trace metals, are cycled between land, water and the atmosphere by the actions of microscopic bacteria and archaea that both extract and recycle these elements on a continuous basis. Understanding how microbes control these so called biogeochemical cycles is critical for understanding how the environment will change in the face of natural and anthropogenic alterations. To predict how ecosystems will respond to increases in nutrient inputs, changes in temperatures, increases in atmospheric carbon dioxide and similar drivers, computer models are constructed based on how bacteria grow and interact. However, because a single gram of soil or liter of water contains billions of bacteria consisting of thousands of difference species, it can be challenging to accurately predict their collective geochemistry by modeling all of their growth characteristics and interactions. An alternative approach assumes that complex systems, whether composed of living organisms or not, naturally organize to maximize the extraction and use of available energy. Known as the maximum entropy production (MEP) principle, this theory can be used to describe the collective actions of a community of microorganisms without needing to know exactly which microbes are present and exactly how they interact. If true, the MEP-based approach should produce models with better predictive capabilities than models based on conventional approaches. This project seeks to demonstrate the usefulness of MEP by comparing model predictions to biogeochemical observations collected in an aquatic environment. The investigators will disseminate the modeling approach and research results via journal publications and presentations. The research project will support one postdoctoral scholar in a multidisciplinary research area, independent undergraduate research projects via Marine Biological Laboratory's Semester in Environmental Science Program, and summer internships as part of the Woods Hole Partnership Education Program, which is a consortium of institutions committed to increasing diversity in Woods Hole.A mathematical framework to predict microbial biogeochemistry based on the maximum entropy production (MEP) principle applied to a distributed metabolic network has been developed. The model accurately predicts microbial dynamics and associated chemistry in experimental methanotrophic microcosms and is also adept in predicting metabolic switching between the known nitrate reduction pathways (denitrification, dissimilatory nitrate reduction to ammonium, and anammox) in well-mixed systems as a function of environmental conditions. The MEP approach describes both geochemistry and biogeochemistry, where the latter differs from the former in that living organisms maximizing energy dispersal over time and space as opposed to instantaneously. The objectives of this project are to: 1) advance the MEP biogeochemistry modeling approach by incorporating metabolic reactions for aerobic and anaerobic-based phototrophy; 2) extend the approach from 0D to 1D to examine hypotheses for integrating MEP over space; 3) collect diel biogeochemical measurements over vertical profiles in a meromictic pond (Siders Pond on Cape Cod, MA) for model development and testing; 4) measure allocation of molecular machinery associated with key biogeochemical pathways over depth in Siders Pond using metagenomics and metatranscriptomics and compare these observations to model predictions.
大多数对地球上的生命至关重要的元素,如氮、碳、磷、硫和许多微量金属,在陆地、水和大气之间循环,通过微观细菌和古细菌的作用,它们不断地提取和循环这些元素。了解微生物如何控制这些所谓的生物地球化学循环,对于了解环境在面对自然和人为变化时将如何变化至关重要。为了预测生态系统将如何对养分输入的增加、温度的变化、大气二氧化碳的增加和类似的驱动因素做出反应,基于细菌的生长和相互作用建立了计算机模型。然而,因为一克土壤或一升水含有数十亿细菌,由数千种不同的物种组成,通过模拟它们所有的生长特征和相互作用来准确预测它们的集体地球化学是具有挑战性的。另一种方法认为,复杂的系统,无论是否由生物体组成,都会自然地组织起来,以最大限度地提取和利用可用能源。这一理论被称为最大熵产生(MEP)原理,可以用来描述微生物群落的集体行为,而不需要确切地知道哪些微生物存在以及它们是如何相互作用的。如果这是真的,基于mep的方法产生的模型应该比基于传统方法的模型具有更好的预测能力。该项目旨在通过将模型预测与在水生环境中收集的生物地球化学观测结果进行比较,来证明MEP的实用性。研究人员将通过期刊出版物和报告传播建模方法和研究结果。该研究项目将支持一名多学科研究领域的博士后学者,通过海洋生物实验室的环境科学学期计划进行独立的本科生研究项目,以及作为伍兹霍尔合作伙伴教育计划一部分的暑期实习,该计划是一个致力于增加伍兹霍尔多样性的机构联盟。提出了一种基于最大熵产原理的微生物生物地球化学预测数学框架,并将其应用于分布式代谢网络。该模型准确地预测了实验甲烷营养微生物群落中的微生物动力学和相关化学,也擅长预测混合良好的系统中已知硝酸盐还原途径(反硝化、异化硝酸盐还原为铵和厌氧氨氧化)之间的代谢转换,作为环境条件的函数。MEP方法同时描述了地球化学和生物地球化学,后者与前者的不同之处在于生物体随着时间和空间最大化能量分散,而不是瞬间。本项目的目标是:1)通过纳入好氧和厌氧光养代谢反应,推进MEP生物地球化学建模方法;2)将方法从0D扩展到1D,以检验空间上MEP积分的假设;3)在一个分生池塘(马萨诸塞州科德角的Siders池塘)的垂直剖面上收集生物地球化学测量数据,用于模型开发和测试;4)利用宏基因组学和亚转录组学测量Siders Pond深度上与关键生物地球化学途径相关的分子机制分配,并将这些观察结果与模型预测进行比较。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using maximum entropy production to describe microbial biogeochemistry over time and space in a meromictic pond
- DOI:10.3389/fenvs.2018.00100
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:J. Vallino;J. Huber
- 通讯作者:J. Vallino;J. Huber
How the Second Law of Thermodynamics Has Informed Ecosystem Ecology through Its History
- DOI:10.1093/biosci/biv166
- 发表时间:2016-01-01
- 期刊:
- 影响因子:10.1
- 作者:Chapman, Eric J.;Childers, Daniel L.;Vallino, Joseph J.
- 通讯作者:Vallino, Joseph J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Vallino其他文献
Processing watershed‐derived nitrogen in a well‐flushed New England estuary
在冲洗良好的新英格兰河口处理流域产生的氮
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Craig R. Tobias;Matthew Cieri;Bruce J. Peterson;L. Deegan;Joseph Vallino;Jeffrey Hughes - 通讯作者:
Jeffrey Hughes
Joseph Vallino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Vallino', 18)}}的其他基金
EAGER SitS: Developing a Next Generation Modeling Approach for Predicting Microbial Processes in Soil
EAGER SitS:开发下一代建模方法来预测土壤中的微生物过程
- 批准号:
1841599 - 财政年份:2019
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Investigating the connectivity of microbial food webs using thermodynamic models, stable isotope probing and genomics
使用热力学模型、稳定同位素探测和基因组学研究微生物食物网的连通性
- 批准号:
1655552 - 财政年份:2017
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Collaborative Research: Predicting the Spatiotemporal Distribution of Metabolic Function in the Global Ocean
合作研究:预测全球海洋代谢功能的时空分布
- 批准号:
1558710 - 财政年份:2016
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Collaborative Research: Environmental Controls on Anammox and Denitrification Rates in Estuarine and Marine Sediments
合作研究:河口和海洋沉积物中厌氧氨氧化和反硝化率的环境控制
- 批准号:
0852263 - 财政年份:2009
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Theory: Biological systems organize to maximize entropy production subject to information and biophysicochemical constraints
理论:生物系统在信息和生物物理化学约束下组织起来最大化熵产生
- 批准号:
0928742 - 财政年份:2009
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Modeling Microbial Biogeochemistry in Permeable Reactive Barriers
模拟可渗透反应屏障中的微生物生物地球化学
- 批准号:
0756562 - 财政年份:2008
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Collaborative Research: Benthic Microalgal Regulation of Carbon and Nitrogen Turnover in Land Margin Ecosystems: A Dual Stable Isotope Tracer Approach
合作研究:陆地边缘生态系统中碳和氮周转的底栖微藻调节:双稳定同位素示踪剂方法
- 批准号:
0542682 - 财政年份:2006
- 资助金额:
$ 20.37万 - 项目类别:
Continuing Grant
相似海外基金
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
MIM: A thermodynamic theory of microbiome assembly, adaptation and evolution evaluated using modular microbial environments
MIM:使用模块化微生物环境评估微生物组组装、适应和进化的热力学理论
- 批准号:
2125069 - 财政年份:2021
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Developing a quantum thermodynamic theory for driven and heated spin systems.
开发用于驱动和加热自旋系统的量子热力学理论。
- 批准号:
2579023 - 财政年份:2021
- 资助金额:
$ 20.37万 - 项目类别:
Studentship
Effect of thermal activation and vibrational dynamics of dislocations on thermodynamic dislocation theory
位错的热激活和振动动力学对热力学位错理论的影响
- 批准号:
447038308 - 财政年份:2020
- 资助金额:
$ 20.37万 - 项目类别:
WBP Fellowship
Workshop - Thermodynamic Formalism: Ergodic Theory and Geometry
研讨会 - 热力学形式主义:遍历理论和几何
- 批准号:
EP/S020969/1 - 财政年份:2019
- 资助金额:
$ 20.37万 - 项目类别:
Research Grant
Establishment of evaluation method for detergency of surfactants based on the latest solution statistical thermodynamic theory
基于最新溶液统计热力学理论的表面活性剂去污力评价方法的建立
- 批准号:
18K13030 - 财政年份:2018
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermodynamic and Dynamic Behaviour in Polymer Melts, Glasses, and Mixtures: Links to Structure Using Theory and Simulation
聚合物熔体、玻璃和混合物的热力学和动态行为:使用理论和模拟与结构的联系
- 批准号:
1708542 - 财政年份:2017
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Thermodynamic formalism for non-compact spaces with applications in conformal dynamics
非紧空间的热力学形式及其在共形动力学中的应用
- 批准号:
17K14203 - 财政年份:2017
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Thermodynamic formalism for conformal semigroup actions
共形半群作用的热力学形式主义
- 批准号:
15H06416 - 财政年份:2015
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Experimental implications of new developments in quantum thermodynamic theory
量子热力学理论新发展的实验意义
- 批准号:
EP/M009165/1 - 财政年份:2015
- 资助金额:
$ 20.37万 - 项目类别:
Research Grant