STEM-R: Modeling STEM Retention and Departure across Physics, Mathematics, and Engineering

STEM-R:跨物理、数学和工程的 STEM 保留和离开建模

基本信息

项目摘要

Researchers at West Virginia University will develop a new theoretical framework for STEM departure that will detail the reasons why students leave STEM majors. The research extends Tinto's university departure model to include the career exploration process where a student leaves STEM but remains in college. The framework will be developed and tested by extensive measurement of demographic, social, academic, affective (self-efficacy, self-esteem, belonging), career exploration/aspirations and psychological variables at four longitudinal points in physics and mathematics introductory class sequences required for many STEM majors. The longitudinal measurement monitors evolution of a student's STEM career commitment and vocational identity, and determines factors that influence a decision to begin the process of STEM departure or lead to a well-investigated resolution to pursue a STEM career. The research will explore crucial questions influencing university STEM departure, including to what extent departure is preventable by modifying advising protocols, to what extent performance in these gate-keeper classes and its effect on self-efficacy influence the decision to change major, what psychological/social factors mark students beginning to explore non-STEM careers, and to what extent belonging influences retention, particularly of underrepresented women and rural students. The research will contribute to a deeper understanding of this important phenomenon. It also will inform the national discussion of STEM retention by producing a theoretical framework of STEM departure validated across a large, economically diverse pool of students. The research design will implement a multi-stage analysis and measurement with the goal of modeling the process of STEM departure and quantifying the reasons for and markers of the departure process. Researchers will investigate in depth: (1) what modifications are needed in theoretical frameworks for college departure to explain intra-university departure from STEM disciplines, (2) the minimum information required to predict STEM departure and where STEM departure originates, (3) what fraction of STEM departure could be prevented by interventions, (4) how STEM departure markers differ for underserved populations, and (5) how to identify subpopulations of students where interventions will be most effective. Researchers will use institutional class-taking and outcome data to build a set of "survival" probabilities for individual classes and class-taking sequences. Linear regression analysis then be used to analyze how these probabilities are affected by (1) the student's intrinsic characteristics (ability measured by ACT/SAT, race and ethnicity, socioeconomic status, first generation status, and personality profile), (2) the student's academic preparation (high school GPA and high school course-taking patterns), (3) the student's academic performance in his or her current class (measured by attendance patterns and assignment grades), (4) the students current social connectedness to both family and university structures and communities, and (5) the student's current affective state, his or her self-efficacy, sense of belonging, self-esteem, and STEM identity. Latent growth modeling will track changes in these factors over time. In parallel, the student's vocational identity status, his or her state of career exploration and career decision making, will be monitored. Using the four-point longitudinal measurement, transitions in the student's vocational identity state (particularly changes that indicate a renewed career exportation process and therefore the threat of STEM departure) will be correlated with previous changes in survival probabilities and with changes in the student's affective, academic, or social state. Signatures to inform advisers of at risk students and general changes to advising protocols will be developed. Campus social/academic structures that promote retention will be identified. At all levels, differential results for underrepresented students will be investigated with the goal of designing interventions that target these populations.This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in three areas: STEM learning and learning environments, broadening participation, and workforce development.
西弗吉尼亚大学的研究人员将开发一个新的STEM离职理论框架,详细说明学生离开STEM专业的原因。这项研究扩展了Tinto的大学离职模型,将学生离开STEM但仍留在大学的职业探索过程包括在内。该框架将通过对人口统计、社会、学业、情感(自我效能、自尊、归属感)、职业探索/抱负和心理变量的广泛测量,在物理和数学入门课程序列中的四个纵向点进行开发和测试,这是许多STEM专业所需的。纵向测量监测学生STEM职业承诺和职业认同的演变,并确定影响决定开始STEM离开过程或导致充分调查的解决方案追求STEM职业的因素。这项研究将探索影响大学STEM离职的关键问题,包括通过修改建议规程在多大程度上可以防止偏离,这些看门人班级的表现及其对自我效能的影响在多大程度上影响了转学专业的决定,哪些心理/社会因素标志着学生开始探索非STEM职业,以及归属感在多大程度上影响保留,特别是代表不足的女性和农村学生。这项研究将有助于更深入地理解这一重要现象。它还将通过制定STEM离开的理论框架,为全国关于STEM保留的讨论提供信息,该框架在一大批不同经济背景的学生中得到验证。研究设计将实施多阶段分析和测量,目的是对STEM离开过程进行建模,并量化离开过程的原因和标志。研究人员将深入调查:(1)需要对大学内部离开STEM学科的理论框架进行哪些修改,(2)预测STEM离开和STEM离开起源所需的最少信息,(3)干预措施可以防止多大比例的STEM离开,(4)服务不足人群的STEM离开标记有何不同,以及(5)如何确定干预措施将最有效的学生亚群。研究人员将使用机构上课和结果数据来为个别班级和上课序列建立一组“生存”概率。然后用线性回归分析来分析这些概率是如何受以下因素影响的:(1)学生的内在特征(通过ACT/SAT、种族和民族、社会经济地位、第一代地位和人格特征来衡量),(2)学生的学业准备(高中GPA和高中选课模式),(3)学生在当前班级的学业表现(通过出勤模式和作业成绩来衡量),(4)学生目前与家庭和大学结构和社区的社会联系,以及(5)学生目前的情感状态,他或她的自我效能感、归属感、自尊和STEM身份。潜在增长模型将跟踪这些因素随时间的变化。同时,学生的职业身份状态、他或她的职业探索和职业决策状态将受到监控。使用四点纵向测量,学生职业认同状态的转变(特别是表明新的职业输出过程的变化,因此STEM离开的威胁)将与先前生存概率的变化以及学生情感、学业或社会状态的变化相关。将制定通知高危学生顾问的签名和对建议协议的一般修改。将确定促进留住的校园社会/学术结构。在所有层面上,将对代表性不足学生的不同结果进行调查,目的是设计针对这些人群的干预措施。该项目得到了NSF的EHR核心研究(ECR)计划的支持。ECR计划强调基础STEM教育研究,在三个领域产生基础知识:STEM学习和学习环境、扩大参与和劳动力发展。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using machine learning to predict physics course outcomes
使用机器学习来预测物理课程结果
  • DOI:
    10.1103/physrevphyseducres.15.020120
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zabriskie, Cabot;Yang, Jie;DeVore, Seth;Stewart, John
  • 通讯作者:
    Stewart, John
Mediational effect of prior preparation on performance differences of students underrepresented in physics
事先准备对物理学中代表性不足的学生的表现差异的中介作用
  • DOI:
    10.1103/physrevphyseducres.17.010107
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Stewart, John;Cochran, Geraldine L.;Henderson, Rachel;Zabriskie, Cabot;DeVore, Seth;Miller, Paul;Stewart, Gay;Michaluk, Lynnette
  • 通讯作者:
    Michaluk, Lynnette
Mediating role of personality in the relation of gender to self-efficacy in physics and mathematics
物理和数学中人格在性别与自我效能关系中的中介作用
  • DOI:
    10.1103/physrevphyseducres.18.010143
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Henderson, Rachel;Hewagallage, Dona;Follmer, Jake;Michaluk, Lynnette;Deshler, Jessica;Fuller, Edgar;Stewart, John
  • 通讯作者:
    Stewart, John
Using the Social Cognitive Theory Framework to Chart Gender Differences in the Developmental Trajectory of STEM Self-Efficacy in Science and Engineering Students
利用社会认知理论框架绘制理工科学生STEM自我效能感发展轨迹的性别差异
  • DOI:
    10.1007/s10956-020-09853-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Stewart, John;Henderson, Rachel;Michaluk, Lynnette;Deshler, Jessica;Fuller, Edgar;Rambo-Hernandez, Karen
  • 通讯作者:
    Rambo-Hernandez, Karen
The Importance of Belonging and Self-Efficacy in Engineering Identity
归属感和自我效能在工程身份中的重要性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zabriskie, C.;Henderson, R.;Stewart, J.
  • 通讯作者:
    Stewart, J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Stewart其他文献

Evaluation of cellular substrates for antinuclear antibody determinations
用于抗核抗体测定的细胞底物的评估
  • DOI:
    10.1128/jcm.2.1.42-45.1975
  • 发表时间:
    1975
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Nicholas Hahon;Herbert L. Eckert;John Stewart;Appalachian
  • 通讯作者:
    Appalachian
Using Cluster Analysis to Identify Patterns in Students' Responses to Contextually Different Conceptual Problems.
使用聚类分析来识别学生对上下文不同概念问题的反应模式。
Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.
一类免疫网络的动力学。
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    2
  • 作者:
    John Stewart;Francisco J. Varela
  • 通讯作者:
    Francisco J. Varela
Evidence for renal kinins as mediators of amino acid-induced hyperperfusion and hyperfiltration in the rat.
肾激肽作为氨基酸诱导的大鼠过度灌注和过度滤过介质的证据。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    A. Jaffa;Carlos P. Vio;Ricardo H. Silva;Raymond J. Vavrek;John Stewart;Philip F. Rust;R. K. Mayfield
  • 通讯作者:
    R. K. Mayfield
Monitoring State Fulfillment of Economic and Social Rights Obligations in the United States
  • DOI:
    10.1007/s12142-011-0211-1
  • 发表时间:
    2012-01-05
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Susan Randolph;Michelle Prairie;John Stewart
  • 通讯作者:
    John Stewart

John Stewart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Stewart', 18)}}的其他基金

Constructing Valid, Equitable, and Flexible Kinematics and Dynamics Assessment Scales with Evidence-Centered Design
通过以证据为中心的设计构建有效、公平、灵活的运动学和动力学评估量表
  • 批准号:
    2235681
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Breaking the Cycle through Computational Physics: Preparing West Virginia's Rural, First Generation College Students for the Careers of the Future
通过计算物理打破循环:让西弗吉尼亚州农村的第一代大学生为未来的职业做好准备
  • 批准号:
    1833694
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Building the Educational Infrastructure with Scholarships for STEM Teachers to Transform the Economy of West Virginia
通过为 STEM 教师提供奖学金建设教育基础设施,以改变西弗吉尼亚州的经济
  • 批准号:
    1660713
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ARK-PHYS - Physics Scholarships to Build Technical Capacity in Arkansas
ARK-PHYS - 物理奖学金用于建设阿肯色州的技术能力
  • 批准号:
    0966222
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TOPP: Taxonomy of Physics Problems, Improving Student Understanding in Introductory Physics
TOPP:物理问题的分类,提高学生对入门物理的理解
  • 批准号:
    0535928
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US Government Support for IAI Core Budget 2004-05
美国政府对 IAI 2004-05 核心预算的支持
  • 批准号:
    0513971
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Intellectual and Social Predictors of Citations to Scientific Articles
科学文章引用的知识和社会预测因素
  • 批准号:
    8706348
  • 财政年份:
    1987
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
  • 批准号:
    2345378
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Impact of Post-COVID-19 Condition on the Canadian healthcare workforce: An agent-based modeling approach informed by living evidence syntheses to project long-term impacts on worker recovery and retention
COVID-19 后状况对加拿大医疗保健劳动力的影响:基于代理的建模方法,通过活体证据综合来预测对工人康复和保留的长期影响
  • 批准号:
    475223
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
Modeling Secondary School STEM Teacher Retention via Ecological Theories
通过生态理论模拟中学 STEM 教师保留率
  • 批准号:
    1949530
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Modeling Electroencephalography for Identifying Cognitive Retention in E-Learning Applications
脑电图建模用于识别电子学习应用中的认知保留
  • 批准号:
    488836-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Modeling Electroencephalography for Identifying Cognitive Retention in E-Learning Applications
脑电图建模用于识别电子学习应用中的认知保留
  • 批准号:
    488836-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Implementing and Investigating Mathematical Modeling as a Means to Demonstrate the Interdisciplinary Nature of Science and Increase STEM Retention
实施和研究数学建模作为展示科学跨学科性质并提高 STEM 保留率的一种手段
  • 批准号:
    1504630
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical modeling and analysis of HIV care trajectories and retention in care challenges
HIV 护理轨迹的数学建模和分析以及护理挑战的保留
  • 批准号:
    9230340
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
Collaborative Research: Retention of Anisotropic Colloids in Porous Media: A Modeling and Experimental Investigation at Multiple Scales
合作研究:多孔介质中各向异性胶体的保留:多尺度的建模和实验研究
  • 批准号:
    1521421
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Retention of Anisotropic Colloids in Porous Media: A Modeling and Experimental Investigation at Multiple Scales
合作研究:多孔介质中各向异性胶体的保留:多尺度的建模和实验研究
  • 批准号:
    1521428
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Retention in Cancer Clinical Trials: Modeling Patients' Risk Benefit Assessments
癌症临床试验中的保留:患者风险效益评估建模
  • 批准号:
    8978309
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了