RI: Medium: Collaborative Research: Text-to-Image Reference Resolution for Image Understanding and Manipulation
RI:媒介:协作研究:用于图像理解和操作的文本到图像参考分辨率
基本信息
- 批准号:1562098
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops new technologies at the interface of computer vision and natural language processing to understand text-to-image relationships. For example, given a captioned image, the project develops techniques which determine which words (e.g. "woman talking on phone", "The farther vehicle") correspond to which image parts. From robotics to human-computer interaction, there are numerous real-world tasks that benefit from practical systems to identify objects in scenes based on language and understand language based on visual context. In particular, the project develops the first language-based image authoring tool which allows users to edit or synthesize realistic imagery using only natural language (e.g. "delete the garbage truck from this photo" or "make an image with three boys chasing a shaggy dog"). Beyond the immediate impact of creating new ways for users to access and author digital images, the broader impacts of this work include three focus areas: the development of new benchmarks for the vision and language communities, outreach and undergraduate research, and leadership in promoting diversity. At the core of the project are new techniques for large-scale text-to-image reference resolution (TIRR) that enable systems to automatically identify the image regions that depict entities described in natural language sentences or commands. These techniques advance image interpretation by enabling systems to perform partial matching between images and sentences, referring expression understanding, and image-based question answering. They also advance image manipulation by enabling systems that can synthesize images starting from a textual description, or modify images based on natural language commands. The main technical contributions of the project are: (1) benchmark datasets for TIRR with comprehensive large-scale gold standard annotations that will make TIRR a standard task for recognition; (2) principled new representations for text-to-image annotations that expose the compositional nature of language using the formalism of the denotation graph; (3) new models for TIRR that perform an explicit alignment (grounding) of words and phrases to image regions guided by the structure of the denotation graph; (4) applications of TIRR methods to referring expression understanding and visual question answering; and (5) applications of TIRR to image creation and manipulation based on natural language input.
该项目在计算机视觉和自然语言处理的界面上开发新技术,以理解文本到图像的关系。例如,给定一个标题图像,该项目开发的技术,确定哪些词(例如“女人打电话”,“更远的车辆”)对应于图像的哪些部分。从机器人技术到人机交互,有许多现实世界的任务受益于实用系统,可以根据语言识别场景中的对象,并根据视觉上下文理解语言。特别是,该项目开发了第一个基于语言的图像创作工具,允许用户仅使用自然语言编辑或合成逼真的图像(例如“从这张照片中删除垃圾车”或“制作一个三个男孩追逐毛茸茸的狗的图像”)。除了为用户创建访问和创作数字图像的新方法的直接影响外,这项工作的更广泛影响包括三个重点领域:为视觉和语言社区制定新的基准,外联和本科生研究,以及促进多样性的领导力。该项目的核心是大规模文本到图像参考分辨率(TIRR)的新技术,使系统能够自动识别描述自然语言句子或命令中描述的实体的图像区域。这些技术通过使系统能够执行图像和句子之间的部分匹配、引用表达理解和基于图像的问题回答来推进图像解释。它们还通过使系统能够从文本描述开始合成图像或基于自然语言命令修改图像来推进图像操作。该项目的主要技术贡献是:(1)TIRR的基准数据集,具有全面的大规模黄金标准注释,将使TIRR成为识别的标准任务;(2)文本到图像注释的原则性新表示,使用表示图的形式主义揭示语言的组成性质;(3)执行显式对齐的TIRR的新模型(4)TIRR方法在指称表达理解和视觉问答中的应用;以及(5)TIRR在基于自然语言输入的图像创建和处理中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohit Bansal其他文献
iFacetSum: Coreference-based Interactive Faceted Summarization for Multi-Document Exploration
iFacetSum:用于多文档探索的基于共指的交互式分面摘要
- DOI:
10.18653/v1/2021.emnlp-demo.33 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Eran Hirsch;Alon Eirew;Ori Shapira;Avi Caciularu;Arie Cattan;Ori Ernst;Ramakanth Pasunuru;H. Ronen;Mohit Bansal;Ido Dagan - 通讯作者:
Ido Dagan
IMPLI : Investing NLI Models’ Performance on Figurative Language
IMPLI:投资 NLI 模型在比喻语言上的表现
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Devlin;Ming;Kenton Lee;Aniruddha Ghosh;Guofu Li;Tony Veale;Paolo Rosso;Ekaterina Shutova;John Barnden;Hessel Haagsma;Johan Bos;Malvina Nissim;Adith Iyer;Aditya Joshi;Sarvnaz Karimi;Ross Sparks;George Lakoff;Mark Johnson. 1980. Metaphors;Yinhan Liu;Myle Ott;Naman Goyal;Jingfei Du;Mandar Joshi;Danqi Chen;Omer Levy;Mike Lewis;Rui Mao;Chenghua Lin;Frank Guerin;Tom McCoy;Ellie Pavlick;Tal Linzen;Saif M. Mohammad;Peter Tur;Yixin Nie;Yicheng Wang;Mohit Bansal;Adina Williams;Mohit Emily Dinan;Jason Bansal;Weston Douwe;Kiela. 2020 - 通讯作者:
Kiela. 2020
Learning and Analyzing Generation Order for Undirected Sequence Models
学习和分析无向序列模型的生成顺序
- DOI:
10.18653/v1/2021.findings-emnlp.298 - 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Yichen Jiang;Mohit Bansal - 通讯作者:
Mohit Bansal
Quantifying quadrupole effects in the NMR spectra of spin-1/2 nuclei in rotating solids.
量化旋转固体中自旋 1/2 核的 NMR 谱中的四极效应。
- DOI:
10.1039/d3cp02094k - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nisha Bamola;Mohit Bansal;R. Ramachandran - 通讯作者:
R. Ramachandran
On the Limits of Evaluating Embodied Agent Model Generalization Using Validation Sets
关于使用验证集评估具体代理模型泛化能力的局限性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hyounghun Kim;Aishwarya Padmakumar;Di Jin;Mohit Bansal;Dilek Z. Hakkani - 通讯作者:
Dilek Z. Hakkani
Mohit Bansal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohit Bansal', 18)}}的其他基金
CAREER: Semantic Multi-Task Learning for Generalizable and Interpretable Language Generation
职业:用于生成可泛化和可解释语言的语义多任务学习
- 批准号:
1846185 - 财政年份:2019
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant