Non-Invasive Monitoring of Peripheral Artery Behavior via Wearable Sensors

通过可穿戴传感器对外周动脉行为进行无创监测

基本信息

项目摘要

The goal of this project is to monitor vascular tone and peripheral vascular resistance of human arteries using non-invasive, wearable sensors. Vascular tone refers to the relative dilation or constriction of arteries, while peripheral vascular resistance refers to the resistance felt by the heart as it attempts to pump blood through the arterial system outside the body's core. At present, there are no effective means of monitoring these effects outside of the hospital or other critical care settings. Nonetheless, changes in vascular tone and peripheral vascular resistance are known to be key indicators of the progression of various forms of shock, dangerous blood pressure changes during dialysis, and post-surgical complications, among other potentially life-critical medical conditions. This research will provide a means to quickly detect changes in the condition of the peripheral arteries, allowing for more timely intervention and more accurate assessment of treatment effectiveness. The project also includes outreach at the secondary education level on topics such as electronic circuits and fluid behavior.This research will include the creation of a dynamic model capturing the most significant contributions of sensor, tissue, and local arterial fluid dynamics to the response of an externally worn compliant piezoelectric pressure sensor and associated pulse plethysmograph. Advanced parameter identification techniques and viscoelastic hysteresis inversion methods will be used to estimate properties of the underlying artery, and correlate trends in sensor response with changes in arterial diameter. The final objective will be to track changes in relative peripheral artery radius without reliance on wearable sensor calibration to invasive cardiovascular measurements. Results will be validated by comparing non-invasive to invasive vascular resistance estimates in experiments with swine, and comparing peripheral blood pressure and arterial radius estimates from the created sensors to measurements from larger clinical systems such as blood pressure finger cuffs and ultrasound. The intellectual significance of the work is expected to include insight into key model features describing dynamic arterial behavior at the far periphery of the arterial system, novel techniques for identifying parameters in nonlinear, polynomial based models, and information on variability in peripheral vascular response across individuals undergoing cardiovascular stresses.
该项目的目标是使用非侵入式可穿戴传感器监测人体动脉的血管张力和外周血管阻力。血管张力是指动脉的相对扩张或收缩,而外周血管阻力是指心脏试图通过身体核心以外的动脉系统泵血时感受到的阻力。目前,在医院或其他重症监护机构之外没有有效的方法来监测这些影响。尽管如此,已知血管张力和外周血管阻力的变化是各种形式的休克、透析期间危险的血压变化、手术后并发症以及其他可能危及生命的医疗状况进展的关键指标。这项研究将提供一种快速检测外周动脉状况变化的方法,从而可以更及时地进行干预并更准确地评估治疗效果。该项目还包括在中学教育层面推广电子电路和流体行为等主题。这项研究将包括创建一个动态模型,捕捉传感器、组织和局部动脉流体动力学对外部佩戴的顺应性压电压力传感器和相关脉搏体积描记器的响应的最重要贡献。先进的参数识别技术和粘弹性滞后反演方法将用于估计底层动脉的特性,并将传感器响应的趋势与动脉直径的变化相关联。最终目标是跟踪相对外周动脉半径的变化,而不依赖可穿戴传感器校准来进行侵入性心血管测量。将通过比较猪实验中的非侵入性和侵入性血管阻力估计值,并将所创建的传感器的外周血压和动脉半径估计值与更大的临床系统(例如血压指套和超声波)的测量值进行比较来验证结果。这项工作的智力意义预计包括深入了解描述动脉系统远周动态动脉行为的关键模型特征、识别非线性多项式模型中参数的新技术,以及承受心血管应激的个体外周血管反应变异性的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenn Oldham其他文献

Suspension Vibration Compensation Using a MEMS Microactuator in Hard Disk Drives
  • DOI:
    10.1016/s1474-6670(17)34022-3
  • 发表时间:
    2002-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tsung-Lin Chen;Kenn Oldham;Yunfeng Li;Roberto Horowitz
  • 通讯作者:
    Roberto Horowitz

Kenn Oldham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenn Oldham', 18)}}的其他基金

Control of Robust Micro-Robots in Uncertain Environments
不确定环境中鲁棒微型机器人的控制
  • 批准号:
    1435222
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Robust Design and Control of Multi-Axis Thin-film Piezoelectric Scanning Actuators for Deep-Tissue Endoscopic Microscopy
用于深组织内窥镜检查的多轴薄膜压电扫描执行器的鲁棒设计和控制
  • 批准号:
    1334340
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NRI-Small: Robust, highly-mobile MEMS micro-robots based on integration of piezoelectric and polymer materials
NRI-Small:基于压电和聚合物材料集成的坚固、高移动性 MEMS 微型机器人
  • 批准号:
    1208233
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Power Optimization in Autonomous Microsystems via Integrated Motion Control
职业:通过集成运动控制实现自主微系统的功率优化
  • 批准号:
    0954422
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似海外基金

Bionic sensors for non-invasive health monitoring
用于无创健康监测的仿生传感器
  • 批准号:
    MR/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Fellowship
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
  • 批准号:
    2238365
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Innovative Non-invasive and Affordable Technology to Automate Monitoring of Cultures to Enhance Productivity and Accelerate Fermentation and Scale-up in Bioprocessing
创新的非侵入性且经济实惠的技术,可自动监测培养物,以提高生产力并加速生物加工中的发酵和规模化
  • 批准号:
    10072820
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant for R&D
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Non-Invasive Carotid Artery Measurements for Continuous Intracranial Pressure Monitoring
用于连续颅内压监测的无创颈动脉测量
  • 批准号:
    10607969
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Non-invasive monitoring of gestational health via placental miRNA biomarkers using TRAP technology
使用 TRAP 技术通过胎盘 miRNA 生物标志物无创监测妊娠健康
  • 批准号:
    10754097
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Evaluation of Pre-Analytical Factors of Urine Samples for Urine Cancer Cell Cultures (UCCC) --A Non-Invasive Biomarker – in Monitoring Response and Recurrence of Bladder Cancer
尿癌细胞培养 (UCCC) 尿液样本分析前因素的评估——一种非侵入性生物标志物 — 用于监测膀胱癌的反​​应和复发
  • 批准号:
    10640606
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Advanced non-invasive optical measurement techniques for the constant monitoring of blood lipid components
先进的无创光学测量技术,持续监测血脂成分
  • 批准号:
    23K11799
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SNSPD-DCS at 1064 nm for non-invasive monitoring of cerebral perfusion and intracranial pressure in the ICU
1064 nm 的 SNSPD-DCS 用于 ICU 脑灌注和颅内压的无创监测
  • 批准号:
    10628070
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Non-invasive technologies for diagnosis and monitoring of inflammatory bowel diseases
用于诊断和监测炎症性肠病的非侵入性技术
  • 批准号:
    10079511
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了