III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
基本信息
- 批准号:1562303
- 负责人:
- 金额:$ 36.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the past decade has seen considerable advances in predicting missing entries in data matrices, existing approaches have demonstrated sobering performance and several limitations in an important scientific problem: characterizing plant traits, such as plant height, seed mass, leaf area, and leaf nitrogen, over space and time. Detailed global maps of plant traits will enable accurate quantification of terrestrial ecosystem functions, such as agricultural and forest productivity, and regulation of atmospheric CO2 levels. This project uses the largest and most comprehensive plant trait database on the planet (TRY, www.try-db.org) to develop a detailed characterization of plant functional traits and trait diversity at relatively fine scales across most of the terrestrial land surface. In doing so, the project produces the first detailed uncertainty quantified maps of plant traits across all of earth's major land ecosystems as well as their future projections. The project trains a new generation of interdisciplinary scientists who can cross the traditional boundaries between computer science, spatial statistics, and the Earth sciences.The research in the project makes substantial advances on Bayesian probabilistic models for matrix gap filling or matrix completion, as well as spatiotemporal gap filling with emphasis on continuous fields. In particular, the project develops probabilistic matrix completion models which can incorporate domain specific hierarchies, such as plant taxonomic or phylogenetic trees, as well as spatial variations across different environmental regimes. The project also develops methods for gap filling in continuous fields based on spatiotemporal process models along with highly scalable inference methods based on dynamic nearest-neighbor Gaussian processes. The models and methods are expected to have impact beyond the scope of quantifying ecosystem functions.
虽然过去十年在预测数据矩阵中的缺失条目方面取得了相当大的进展,但现有方法在一个重要的科学问题上表现出了令人清醒的性能和一些局限性:在空间和时间上表征植物性状,如植物高度,种子质量,叶面积和叶氮。详细的全球植物特征地图将能够准确量化陆地生态系统功能,如农业和森林生产力,以及调节大气中的二氧化碳水平。该项目使用地球上最大和最全面的植物性状数据库(TRY,www.try-db.org),以相对精细的尺度在大多数陆地表面上详细描述植物功能性状和性状多样性。在这样做的过程中,该项目产生了第一个详细的不确定性量化地图的植物性状在地球上所有主要的土地生态系统,以及他们的未来预测。该项目培养了新一代跨学科的科学家,他们可以跨越计算机科学,空间统计学和地球科学之间的传统界限。该项目的研究在贝叶斯概率模型方面取得了实质性进展,用于矩阵间隙填充或矩阵完成,以及时空间隙填充,重点是连续领域。特别是,该项目开发的概率矩阵完成模型,可以结合特定领域的层次结构,如植物分类或系统发育树,以及在不同的环境制度的空间变化。该项目还开发了基于时空过程模型沿着与高度可扩展的推理方法,基于动态最近邻高斯过程的连续字段的间隙填充方法。预计这些模型和方法的影响将超出生态系统功能量化的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudipto Banerjee其他文献
Conjugate Bayesian Regression Models for Massive Geostatistical Data Sets
海量地统计数据集的共轭贝叶斯回归模型
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sudipto Banerjee - 通讯作者:
Sudipto Banerjee
B2Z: An R Package for Bayesian Two-Zone Models
B2Z:贝叶斯两区模型的 R 包
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
João V. D. Monteiro;Sudipto Banerjee;G. Ramachandran - 通讯作者:
G. Ramachandran
STATISTICAL INFERENCE ON TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA By
对加州哮喘住院区域汇总数据中时间梯度的统计推断
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Harrison Quick;Sudipto Banerjee;B. Carlin - 通讯作者:
B. Carlin
Improving Crop Model Inference Through Bayesian Melding With Spatially Varying Parameters
- DOI:
10.1007/s13253-011-0070-x - 发表时间:
2011-11-08 - 期刊:
- 影响因子:1.100
- 作者:
Andrew O. Finley;Sudipto Banerjee;Bruno Basso - 通讯作者:
Bruno Basso
Nonstationary Spatial Process Models with Spatially Varying Covariance Kernels
具有空间变化协方差核的非平稳空间过程模型
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S'ebastien Coube;Sudipto Banerjee;B. Liquet - 通讯作者:
B. Liquet
Sudipto Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudipto Banerjee', 18)}}的其他基金
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113778 - 财政年份:2021
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
- 批准号:
1916349 - 财政年份:2019
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: Hierarchical Sparsity-Inducing Gaussian Process Models for Bayesian Inference on Large Spatiotemporal Datasets
合作研究:大型时空数据集贝叶斯推理的层次稀疏诱导高斯过程模型
- 批准号:
1513654 - 财政年份:2015
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Hierarchical models for Large Geostatistical Datasets with Application
大型地统计数据集的层次模型及其应用
- 批准号:
1106609 - 财政年份:2011
- 资助金额:
$ 36.2万 - 项目类别:
Continuing Grant
Hierarchical models for Large Geostatistical Datasets with Applications to Forestry and Ecology
大型地统计数据集的分层模型及其在林业和生态学中的应用
- 批准号:
0706870 - 财政年份:2007
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 36.2万 - 项目类别:
Standard Grant














{{item.name}}会员




