Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models

合作研究:高维时空过程模型的统计推断

基本信息

  • 批准号:
    2113778
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Spatial data science and other emerging technologies related to Geographic Information Systems are increasingly conspicuous in scientific discoveries. Scientists in a variety of disciplines today have unprecedented access to massive spatial and temporal databases comprising high resolution remote sensed measurements. Statistical modeling and analysis for such data need to account for spatial associations and variations at multiple levels while attempting to recognize underlying patterns and potentially complex relationships. Traditional statistical hypothesis testing is no longer adequate for these scientific problems and statisticians are increasingly turning to specialized methods for analyzing complex spatial-temporal data. However, there continue to remain substantial theoretical and methodological bottlenecks with regard to the interpretation of statistical models. This project will address these problems by developing probabilistic machine learning tools for spatial-temporal Big Data that can have far-reaching public health, economic, environmental, and scientific implications. Several innovations in statistical theory, methodologies and computational algorithms are envisioned that will inform basic science and policy questions arising in diverse disciplines using geographic information sciences. Key educational components include dissemination of technologies across the scientific communities including data scientists, engineers, foresters, ecologists, and climate scientists. The Principal Investigators will train the next generation of data scientists through dissemination efforts for graduate students in STEM fields. The PIs aim to blend innovative theory, methods and applications to advance knowledge of spatial-temporal stochastic processes with an emphasis on their properties for high-dimensional inference. This domain of spatial statistics has witnessed a burgeoning of models and methods for Big Data analysis. New classes of models have emerged from the judicious use of directed acyclic graphs (DAGs) that are being applied to massive datasets comprising several millions of spatiotemporal coordinates. Theoretical explorations envisioned in this project will focus upon statistical inference on the process parameters and the underlying spatial process. The PIs intend to perform rigorous investigations into statistical inference for high-dimensional spatio-temporal processes to derive micro-ergodic parameters for such models that will be consistently estimable and, at the same time, yield consistent predictive inference. The PIs will develop new methodologies that cast high-dimensional stochastic processes into computationally practicable frameworks by embedding graphical Gaussian processes within hierarchical frameworks for jointly modeling highly multivariate spatial data. Innovative statistical theory and methods will be developed and used to construct sparsity-inducing graphical spatio-temporal models to accommodate massive numbers of outcomes and capture complex dependencies among variables across massive numbers of locations. The planned theoretical explorations into the inferential properties of newly emerging scalable spatio-temporal processes will produce novel statistical contributions. The PIs will provide probability-based uncertainty quantification and will substantially enhance the understanding of physical and natural processes underlying various problems in the physical, environmental and biomedical sciences and in public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间数据科学和其他与地理信息系统相关的新兴技术在科学发现中日益引人注目。今天,不同学科的科学家可以史无前例地访问包括高分辨率遥感测量在内的海量时空数据库。对这类数据的统计建模和分析需要考虑到多个层面上的空间关联和变化,同时试图识别潜在的模式和潜在的复杂关系。传统的统计假设检验不再适合这些科学问题,统计学家越来越多地转向专门的方法来分析复杂的时空数据。然而,在解释统计模型方面仍然存在重大的理论和方法瓶颈。该项目将通过开发时空大数据的概率机器学习工具来解决这些问题,这些工具可能会对公共健康、经济、环境和科学产生深远的影响。统计理论、方法和计算算法方面的若干创新设想将利用地理信息科学为不同学科中出现的基础科学和政策问题提供信息。关键的教育组成部分包括在科学界传播技术,这些科学界包括数据科学家、工程师、林学家、生态学家和气候科学家。首席调查员将通过向STEM领域的研究生进行传播工作,培训下一代数据科学家。PI旨在融合创新的理论、方法和应用,以促进时空随机过程的知识,并强调其高维推理的特性。这一空间统计领域见证了大数据分析的模型和方法的蓬勃发展。由于对有向无环图(DAG)的合理使用,出现了一类新的模型,这些DAG正被应用于包含数百万时空坐标的海量数据集。本项目设想的理论探索将侧重于对过程参数和基本空间过程的统计推断。PI打算对高维时空过程的统计推断进行严格的调查,以得出此类模型的微遍历参数,这些参数将是一致可估计的,同时产生一致的预测推断。PIS将开发新的方法,通过在分层框架内嵌入图形高斯过程,将高维随机过程投射到计算可行的框架中,以联合建模高度多变量的空间数据。创新的统计理论和方法将被开发并用于构建稀疏性诱导的图形时空模型,以适应大量结果,并捕获大量地点变量之间的复杂依赖关系。对新出现的可伸缩时空过程的推论性质的有计划的理论探索将产生新的统计贡献。PIS将提供基于概率的不确定性量化,并将大大增强对物理、环境和生物医学科学以及公共卫生中各种问题背后的物理和自然过程的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On identifiability and consistency of the nugget in Gaussian spatial process models
高斯空间过程模型中块金的可识别性和一致性
A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data
用于审查的多深度地球化学数据的最近邻高斯过程空间因子模型
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains.
High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach
高维多元地质统计学:贝叶斯矩阵 - 正态方法
  • DOI:
    10.1002/env.2675
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhang, Lu;Banerjee, Sudipto;Finley, Andrew O.
  • 通讯作者:
    Finley, Andrew O.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sudipto Banerjee其他文献

Conjugate Bayesian Regression Models for Massive Geostatistical Data Sets
海量地统计数据集的共轭贝叶斯回归模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sudipto Banerjee
  • 通讯作者:
    Sudipto Banerjee
B2Z: An R Package for Bayesian Two-Zone Models
B2Z:贝叶斯两区模型的 R 包
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    João V. D. Monteiro;Sudipto Banerjee;G. Ramachandran
  • 通讯作者:
    G. Ramachandran
STATISTICAL INFERENCE ON TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA By
对加州哮喘住院区域汇总数据中时间梯度的统计推断
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harrison Quick;Sudipto Banerjee;B. Carlin
  • 通讯作者:
    B. Carlin
Improving Crop Model Inference Through Bayesian Melding With Spatially Varying Parameters
Nonstationary Spatial Process Models with Spatially Varying Covariance Kernels
具有空间变化协方差核的非平稳空间过程模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S'ebastien Coube;Sudipto Banerjee;B. Liquet
  • 通讯作者:
    B. Liquet

Sudipto Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sudipto Banerjee', 18)}}的其他基金

Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
  • 批准号:
    1916349
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1562303
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Hierarchical Sparsity-Inducing Gaussian Process Models for Bayesian Inference on Large Spatiotemporal Datasets
合作研究:大型时空数据集贝叶斯推理的层次稀疏诱导高斯过程模型
  • 批准号:
    1513654
  • 财政年份:
    2015
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Hierarchical models for Large Geostatistical Datasets with Application
大型地统计数据集的层次模型及其应用
  • 批准号:
    1106609
  • 财政年份:
    2011
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Hierarchical models for Large Geostatistical Datasets with Applications to Forestry and Ecology
大型地统计数据集的分层模型及其在林业和生态学中的应用
  • 批准号:
    0706870
  • 财政年份:
    2007
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了