Collaborative Research: Parallel, Adaptive Manufacturing of Nano-scale Electrical Interconnects Using DNA Self-Assembly

合作研究:利用 DNA 自组装并行、自适应制造纳米级电气互连

基本信息

  • 批准号:
    1562661
  • 负责人:
  • 金额:
    $ 9.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Perhaps the most important technology to arise in the past 100 years has been the integrated circuit, which is the key component of computers, smartphones, tablets, and other widely used consumer electronic devices. Conventional lithography and micromachining methods have made possible large-scale manufacturing of integrated circuits. However, transitioning to increased performance and functionality with smaller, nanometer-scale fabrication is extremely costly and currently involves highly trained personnel and slow methods that are not readily scaled up. We will use the selectivity of DNA pairing to build connectors for circuit elements at the nanoscale at low cost and without human intervention. These biomolecular connectors will be subsequently coated with materials used in integrated circuits. This award will show the feasibility of utilizing self-assembly with DNA as an automated manufacturing technique that can be scaled up in the future to create nanoscale electrical circuits in a highly parallel manner. This award will be carried out by students at both universities and will involve extensive interaction through videoconferencing and travel to respective laboratories to enable all students to develop expertise in the different areas needed to complete this work. The research will draw from ideas across engineering and science and will include education and outreach programs for K-12 and undergraduate students that include in-person interaction and mentorship of underrepresented minority students in Baltimore City and the Provo Utah area. This award will develop a method for assembling conductive nanowires precisely between molecular-scale terminals using DNA nanostructure assembly and post-functionalization. Such a method could be used to self-assemble and position many connectors in parallel. Importantly, this adaptive assembly method does not require the positions and orientations of these terminals and the distance between them to be known in advance. To explore the feasibility of this assembly method and the functionality of the resulting connectors, the project will develop a platform that will enable the simultaneous bottom-up assembly of many interconnects between electrodes, such that the electrical conductivity of each assembled interconnect can be characterized. The research team will build an array of multiple conductive interconnects templated by DNA nanostructures such that their terminals are precisely positioned on electrodes and use bottom-up methods to direct the assembly of DNA connectors precisely between these terminal molecules. Electroless plating and related methods will then be used to assemble conductive connections between the terminals. The electrical characterization of many such connectors simultaneously will provide valuable information about the inherent variability in performance of such connectors, while measuring the yield of assembly will increase our understanding of the reliability of bottom-up assembly of electronic circuits and devices.
也许在过去100年中出现的最重要的技术是集成电路,它是计算机,智能手机,平板电脑和其他广泛使用的消费电子设备的关键部件。传统的光刻和微机械加工方法已经使得大规模制造集成电路成为可能。然而,通过更小的纳米级制造过渡到更高的性能和功能是非常昂贵的,目前涉及训练有素的人员和缓慢的方法,这些方法不容易扩大规模。我们将利用DNA配对的选择性,以低成本和无人为干预的方式在纳米级上构建电路元件的连接器。这些生物分子连接器随后将被涂上用于集成电路的材料。该奖项将展示利用DNA自组装作为一种自动化制造技术的可行性,该技术可以在未来扩大规模,以高度并行的方式创建纳米级电路。该奖项将由两所大学的学生进行,并将通过视频会议和前往各自的实验室进行广泛的互动,使所有学生能够在完成这项工作所需的不同领域发展专业知识。 该研究将借鉴工程和科学的想法,并将包括K-12和本科生的教育和推广计划,包括亲自互动和指导巴尔的摩市和普罗沃犹他州地区代表性不足的少数民族学生。该奖项将开发一种使用DNA纳米结构组装和后功能化在分子级端子之间精确组装导电纳米线的方法。 这种方法可用于自组装和平行定位许多连接器。 重要的是,这种自适应组装方法不需要预先知道这些端子的位置和取向以及它们之间的距离。为了探索这种组装方法的可行性和所得连接器的功能,该项目将开发一个平台,该平台将使电极之间的许多互连件能够同时自下而上组装,从而可以表征每个组装互连件的导电性。该研究小组将构建一个由DNA纳米结构模板化的多个导电互连阵列,使其端子精确定位在电极上,并使用自下而上的方法来指导DNA连接器在这些端子分子之间的精确组装。 然后将使用无电镀和相关方法来组装端子之间的导电连接。 许多这样的连接器的电气特性同时将提供有价值的信息,这些连接器的性能的固有的可变性,而测量组装的产量将增加我们的理解的可靠性的自下而上的组装的电子电路和设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Schulman其他文献

A simple method to alter the binding specificity of DNA-coated colloids that crystallize.
一种改变 DNA 包被胶体结晶结合特异性的简单方法。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    P. Moerman;H. Fang;Thomas E. Videbæk;W. B. Rogers;Rebecca Schulman
  • 通讯作者:
    Rebecca Schulman
Synthetic Integrated <em>In Vitro</em> Transcriptional Regulatory Networks
  • DOI:
    10.1016/j.bpj.2018.11.1660
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel Schaffter;Rebecca Schulman
  • 通讯作者:
    Rebecca Schulman
Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes
减少 DNA 纳米结构和链置换复合物的启动子非依赖性转录的策略
  • DOI:
    10.1021/acssynbio.3c00726
  • 发表时间:
    2024-07-19
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Samuel W. Schaffter;Eli Kengmana;Joshua Fern;Shane R. Byrne;Rebecca Schulman
  • 通讯作者:
    Rebecca Schulman
DNA computation improves diagnostic workflows
DNA 计算改进了诊断工作流程
  • DOI:
    10.1038/s41565-020-0710-9
  • 发表时间:
    2020-06-05
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Pepijn G. Moerman;Rebecca Schulman
  • 通讯作者:
    Rebecca Schulman
Talking across the membrane
跨膜交谈
  • DOI:
    10.1038/s41557-018-0192-7
  • 发表时间:
    2018-12-14
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Yi Li;Rebecca Schulman
  • 通讯作者:
    Rebecca Schulman

Rebecca Schulman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Schulman', 18)}}的其他基金

Collaborative Research: SHF Medium: A language for molecular communication using temporal codes
合作研究:SHF Medium:使用时间代码进行分子通信的语言
  • 批准号:
    2107246
  • 财政年份:
    2021
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
EAGER: (ST2) Integrating synthetic genetic regulatory networks into soft materials to orchestrate new forms of mechanical responsiveness
EAGER:(ST2)将合成基因调控网络集成到软材料中,以协调新形式的机械响应能力
  • 批准号:
    2036803
  • 财政年份:
    2020
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
SemiSynBio: Collaborative Research: YeastOns: Neural Networks Implemented in Communicating Yeast Cells
SemiSynBio:合作研究:YeastOns:在酵母细胞通讯中实现的神经网络
  • 批准号:
    1807546
  • 财政年份:
    2018
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
SHF: Small: Continuously operable biomolecular circuits
SHF:小型:连续运行的生物分子电路
  • 批准号:
    1527377
  • 财政年份:
    2015
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
CAREER: DNA-templated Assembly of Nanoscale Circuit Interconnects
职业:纳米级电路互连的 DNA 模板组装
  • 批准号:
    1253876
  • 财政年份:
    2013
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
SHF:Medium:Collaborative Research: From Molecules to Complex Shapes: Programming Pattern Formation with DNA
SHF:中:合作研究:从分子到复杂形状:用 DNA 编程形成图案
  • 批准号:
    1161941
  • 财政年份:
    2012
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321017
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243706
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
  • 批准号:
    2318975
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
  • 批准号:
    2318974
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243704
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243703
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243705
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
  • 批准号:
    2321015
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: How many routes to the same phenotype? Genetic changes underlying parallel acquisition of mimetic color patterns across bumble bees
合作研究:有多少条途径可以达到相同的表型?
  • 批准号:
    2126418
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Parallel and Real-Time Multicore Scheduling for an Efficiently-Used Cache (PARSEC)
合作研究:CNS 核心:中:高效使用缓存的并行实时多核调度 (PARSEC)
  • 批准号:
    2211641
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了