SHF:Medium:Collaborative Research: From Molecules to Complex Shapes: Programming Pattern Formation with DNA
SHF:中:合作研究:从分子到复杂形状:用 DNA 编程形成图案
基本信息
- 批准号:1161941
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development in humans and other higher organisms creates complex,precisely defined multicellular structures and patterns. Thesestructures are the result of molecular programs that are stored in thesequences and concentrations of biomolecules and are executed whenmolecules interact and change state through chemical reactions. Thegoal of this proposal is to understand how biochemical systems can bereliably programmed to form asymmetric patterns with multiple layersof organization. This proposal is part of a general goal to understandhow to program global behavior and structure based on local rules,which a key intellectual challenge in many areas of computer science. The PIs propose that complex, hierarchical chemical patterns can be formedby systems in which the molecules collectively execute a molecularprogram for pattern formation. The PIs will develop achemical programming language in which information from simple inputpatterns is integrated by logical operations to form new patternregions. These logical operations are then systematically integratedinto larger programs, allowing the generation of patterns withcomplex, multiscale structure similar to that seen inbiology. Designed synthetic DNA molecules that together act as circuitelements will be used to implement this language. DNA molecules areideal substrates for a molecular programming approach because theyhave complex sequences with predictable behaviors and interactions.This research is tightly integrated with an outreach program that will develop an educational program dedicated to teaching theinterdisciplinary skills that are necessary to be successful inmolecular programming.
人类和其他高等生物的发育创造了复杂的、精确定义的多细胞结构和模式。这些结构是存储在生物分子序列和浓度中的分子程序的结果,并在分子相互作用和通过化学反应改变状态时执行。本提案的目标是了解生化系统如何能够可靠地编程形成具有多层组织的不对称模式。该建议是理解如何基于局部规则编程全局行为和结构的总体目标的一部分,这是计算机科学许多领域的关键智力挑战。pi提出,复杂的、分层的化学模式可以由分子共同执行模式形成的分子程序的系统形成。pi将开发化学编程语言,其中来自简单输入模式的信息通过逻辑运算集成以形成新的模式区域。然后,这些逻辑操作被系统地整合到更大的程序中,从而产生类似于生物学中所见的复杂、多尺度结构的模式。设计的合成DNA分子一起充当电路元件,将用于实现这种语言。DNA分子是分子编程方法的理想底物,因为它们具有可预测的行为和相互作用的复杂序列。这项研究与一个扩展计划紧密结合,该计划将开发一个教育计划,致力于教授成功进行分子编程所必需的跨学科技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Schulman其他文献
A simple method to alter the binding specificity of DNA-coated colloids that crystallize.
一种改变 DNA 包被胶体结晶结合特异性的简单方法。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
P. Moerman;H. Fang;Thomas E. Videbæk;W. B. Rogers;Rebecca Schulman - 通讯作者:
Rebecca Schulman
Synthetic Integrated <em>In Vitro</em> Transcriptional Regulatory Networks
- DOI:
10.1016/j.bpj.2018.11.1660 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Samuel Schaffter;Rebecca Schulman - 通讯作者:
Rebecca Schulman
Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes
减少 DNA 纳米结构和链置换复合物的启动子非依赖性转录的策略
- DOI:
10.1021/acssynbio.3c00726 - 发表时间:
2024-07-19 - 期刊:
- 影响因子:3.900
- 作者:
Samuel W. Schaffter;Eli Kengmana;Joshua Fern;Shane R. Byrne;Rebecca Schulman - 通讯作者:
Rebecca Schulman
DNA computation improves diagnostic workflows
DNA 计算改进了诊断工作流程
- DOI:
10.1038/s41565-020-0710-9 - 发表时间:
2020-06-05 - 期刊:
- 影响因子:34.900
- 作者:
Pepijn G. Moerman;Rebecca Schulman - 通讯作者:
Rebecca Schulman
Talking across the membrane
跨膜交谈
- DOI:
10.1038/s41557-018-0192-7 - 发表时间:
2018-12-14 - 期刊:
- 影响因子:20.200
- 作者:
Yi Li;Rebecca Schulman - 通讯作者:
Rebecca Schulman
Rebecca Schulman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Schulman', 18)}}的其他基金
Collaborative Research: SHF Medium: A language for molecular communication using temporal codes
合作研究:SHF Medium:使用时间代码进行分子通信的语言
- 批准号:
2107246 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EAGER: (ST2) Integrating synthetic genetic regulatory networks into soft materials to orchestrate new forms of mechanical responsiveness
EAGER:(ST2)将合成基因调控网络集成到软材料中,以协调新形式的机械响应能力
- 批准号:
2036803 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SemiSynBio: Collaborative Research: YeastOns: Neural Networks Implemented in Communicating Yeast Cells
SemiSynBio:合作研究:YeastOns:在酵母细胞通讯中实现的神经网络
- 批准号:
1807546 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Parallel, Adaptive Manufacturing of Nano-scale Electrical Interconnects Using DNA Self-Assembly
合作研究:利用 DNA 自组装并行、自适应制造纳米级电气互连
- 批准号:
1562661 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Continuously operable biomolecular circuits
SHF:小型:连续运行的生物分子电路
- 批准号:
1527377 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: DNA-templated Assembly of Nanoscale Circuit Interconnects
职业:纳米级电路互连的 DNA 模板组装
- 批准号:
1253876 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant