Engineering the Anisotropy of Magnesium Alloys for Enhanced Performance

设计镁合金的各向异性以提高性能

基本信息

项目摘要

Magnesium is the lightest metal that can be used in load bearing applications in various alloy forms. However, current processing techniques for forming and shaping are limited to elevated temperatures, which drive high production costs and a negative environmental footprint. This award supports fundamental research to provide strategies for producing fracture-resistant Mg alloys, including during forming operations. A key departure from current thinking is to engineer an essential feature of these materials, the directionality of their properties, which is conventionally thought of as deleterious, hence to be mitigated. Accelerated insertion of Mg alloys is potentially transformative in a multi-billion dollar economy of the transportation industry. In addition, use of these lightweight structural materials will lead to reduction in fuel consumption and emissions with a positive impact on the environment, including in manufacturing. The project activities will create an interdisciplinary research environment for both undergraduate and graduate students and investigate teaching methods in processing and manufacturing. The research will elucidate the relationship between the plastic anisotropy of Mg alloys and their fracture resistance and formability. The underlying hypothesis is that the anisotropy of Mg alloys can be engineered to develop materials with unprecedented strength and ductility. To test the hypothesis, materials sharing the same chemical composition and microstructure but having different textures will be produced in bulk and sheet form and characterized for their plastic strength, formability and fracture properties. A metrics-based methodology will be developed for correlating plastic anisotropy with measures of fracture and formability. Discrete dislocation dynamics, continuum damage mechanics analyses and simulations as well as investigations of microscopic damage mechanisms will be carried out to gain further insight into the success or failure of such correlations. The project will therefore help answer important questions such as: (i) Is material anisotropy intrinsically deleterious? If not, how can it be engineered for enhanced performance? (ii) Does enhanced ductility translate into cost-effective formability? (iii) Are there any achievable textures that result in types of anisotropy that prevent shear failure? (iv) How does the anisotropy manifest at dislocation scales? Inquiry into these issues will follow a holistic approach that brings together materials science, mechanics and manufacturing.
镁是最轻的金属,可用于各种合金形式的承载应用。然而,目前的成型加工技术仅限于高温,这导致了高生产成本和负面的环境足迹。该奖项支持基础研究,为生产抗断裂镁合金提供策略,包括在成形过程中。从目前的想法出发,关键是设计这些材料的一个基本特征,即它们属性的方向性,这通常被认为是有害的,因此需要减轻。镁合金的加速应用对运输业数十亿美元的经济具有潜在的变革意义。此外,使用这些轻质结构材料将减少燃料消耗和排放,对环境产生积极影响,包括在制造业。该项目活动将为本科生和研究生创造一个跨学科的研究环境,并研究加工和制造的教学方法。该研究将阐明镁合金的塑性各向异性与其抗断裂性和成形性之间的关系。潜在的假设是,镁合金的各向异性可以被设计成具有前所未有的强度和延展性的材料。为了验证这一假设,将以块状和片状的形式生产具有相同化学成分和微观结构但具有不同纹理的材料,并对其塑性强度、成形性和断裂性能进行表征。将开发一种基于度量的方法,用于将塑性各向异性与断裂和成形性测量相关联。离散位错动力学、连续损伤力学分析和模拟以及微观损伤机制的研究将进一步深入了解这种相关性的成功或失败。因此,该项目将有助于回答以下重要问题:(i)材料各向异性在本质上是否有害?如果不是,如何设计它以增强性能?(ii)增强的延展性是否转化为具有成本效益的成形性?(iii)是否存在任何可实现的纹理,可以产生防止剪切破坏的各向异性类型?(iv)各向异性在位错尺度上是如何表现的?对这些问题的研究将遵循综合材料科学、力学和制造的方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constitutive relations and their time integration for anisotropic elasto-plastic porous materials
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed-Amine Benzerga其他文献

Ahmed-Amine Benzerga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed-Amine Benzerga', 18)}}的其他基金

Collaborative Research: Multiscale Modeling of Damage Tolerance in Hexagonal Materials
合作研究:六边形材料损伤容限的多尺度建模
  • 批准号:
    1932975
  • 财政年份:
    2019
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant
CyberTraining: CIC: The Texas A&M University Computational Materials Science Summer School (CMS3)
网络培训:CIC:德克萨斯 A
  • 批准号:
    1829799
  • 财政年份:
    2018
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant
Stress State, Strain History and Microstructural Effects in Ductile Fracture
延性断裂中的应力状态、应变历史和微观结构效应
  • 批准号:
    1405226
  • 财政年份:
    2014
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant
CAREER: Bridging Experiments and Multiscale Modeling of Size- and Temperature-dependent Phenomena in Polycrystalline Plasticity
职业:多晶塑性中尺寸和温度相关现象的桥接实验和多尺度建模
  • 批准号:
    0748187
  • 财政年份:
    2008
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
  • 批准号:
    2330254
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
  • 批准号:
    23K05776
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
  • 批准号:
    EP/X025454/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Research Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Continuing Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 41.95万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了