TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
基本信息
- 批准号:1564039
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online social networks (OSNs) face various forms of fraud and attacks, such as spam, denial of service, Sybil attacks, and viral marketing. In order to build trustworthy and secure OSNs, it has become critical to develop techniques to analyze and detect OSN fraud and attacks. Existing OSN security approaches usually target a specific type of OSN fraud or attack and often fall short of detecting more complex attacks such as collusive attacks that involve many fraudulent OSN accounts, or dynamic attacks that encompass multiple attack phases over time. This research, dubbed oSAFARI (Online SociAl network Fraud and Attack Research and Identification), models, analyzes and characterizes OSN frauds and attacks; designs, develops, and evaluates a new approach to detecting static OSN frauds and attacks; and further enhances the approach to handle dynamic attacks with multiple phases. The research team plans to develop a new course focused on OSN attacks and defenses, which has the potential to be offered across many institutions. To increase public security awareness, the team also plans to develop tutorial courses on typical OSN attacks and their defense and offer them at popular public events and in freshman classes. The research team will broadly disseminate their results, tools, software, and documents to the research community, IT industries, and to OSN companies. This project embraces a systematic, comprehensive study of OSN frauds and attacks. It models OSN threats by viewing an OSN as a graph embedded with attacker nodes and edges, identifies and analyzes specific forms of frauds and attacks, and evaluates state-of-the-art attack analysis and defense approaches. It develops a spectral-analysis-based framework for OSN fraud and attack detection. The framework transforms topological information of an OSN graph into patterns formed by spectral coordinates in the spectral space, and introduces the use of the spectral graph perturbation theory to more easily model and capture changes of spectral coordinates for attacker, victim, and regular nodes. Further, this research develops spectral-analysis-based detection approaches for complex networks where nodes can carry attributes and edges can be negative, weighted, or asymmetric. Through a novel combination of the network dynamics and the vector autoregressive model, it develops an automatic spectral-analysis-based approach to detecting dynamic attacks while avoiding the high cost and low accuracy of traditional approaches. It also transforms attack characteristics from high-dimensional spectral spaces into distinctive visual patterns, and develops interactive mechanisms for analysts to incorporate domain knowledge and flexibly handle attacks. The research team will build a simulation framework to evaluate the detection approaches against different types of OSN attacks, where one can plug in different OSN datasets to evaluate and compare different detection approaches. Moreover, the research team will build a prototype oSAFARI on top of an OSN, and evaluate how oSAFARI can withstand various attacks in a real setting.
在线社交网络(osn)面临各种形式的欺诈和攻击,例如垃圾邮件、拒绝服务、Sybil攻击和病毒式营销。为了构建可靠、安全的OSN,开发OSN欺诈和攻击的分析和检测技术已成为关键。现有的OSN安全方法通常针对特定类型的OSN欺诈或攻击,往往无法检测更复杂的攻击,例如涉及多个欺诈OSN账户的合谋攻击,或者包含多个攻击阶段的动态攻击。这项研究被称为oSAFARI(在线社交网络欺诈和攻击研究与识别),对OSN欺诈和攻击进行建模、分析和表征;设计、开发和评估一种检测静态OSN欺诈和攻击的新方法;进一步增强了处理多阶段动态攻击的方法。研究小组计划开发一门以OSN攻击和防御为重点的新课程,这门课程有可能在许多机构中提供。为了提高公众的安全意识,该团队还计划开发关于典型OSN攻击及其防御的教程,并在受欢迎的公共活动和新生课程中提供这些课程。研究小组将向研究界、IT行业和OSN公司广泛传播他们的研究成果、工具、软件和文档。该项目包括对OSN欺诈和攻击进行系统、全面的研究。通过将OSN视为嵌入攻击者节点和边的图,对OSN的威胁进行建模,识别和分析特定的欺诈和攻击形式,并评估最新的攻击分析和防御方法。开发了基于频谱分析的OSN欺诈和攻击检测框架。该框架将OSN图的拓扑信息转换为光谱空间中由谱坐标构成的模式,并引入谱图摄动理论,更方便地建模和捕捉攻击者、受害者和规则节点的谱坐标变化。此外,本研究开发了基于频谱分析的复杂网络检测方法,其中节点可以携带属性,边缘可以是负的、加权的或不对称的。通过网络动力学与向量自回归模型的新颖结合,开发了一种基于自动频谱分析的动态攻击检测方法,避免了传统方法成本高、准确率低的问题。该方法还将攻击特征从高维光谱空间转化为独特的视觉模式,并开发了交互机制,便于分析人员整合领域知识,灵活应对攻击。研究团队将构建一个仿真框架来评估针对不同类型OSN攻击的检测方法,其中可以插入不同的OSN数据集来评估和比较不同的检测方法。此外,研究团队将在OSN之上构建oSAFARI原型,并评估oSAFARI如何在真实环境中抵御各种攻击。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aidong Lu其他文献
Object-based Visual Attention Quantification using Head Orientation in VR Applications
在 VR 应用中使用头部方向进行基于对象的视觉注意力量化
- DOI:
10.23940/ijpe.19.03.p2.732742 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Honglei Han;Aidong Lu;Chanchan Xu;U. Wells - 通讯作者:
U. Wells
Personal Movie Recommendation Visualization from Rating Streams Kodzo Webga
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Aidong Lu - 通讯作者:
Aidong Lu
2003 Index IEEE Transactions on Visualization and Computer Graphics Vol. 9
2003 年 IEEE 可视化和计算机图形学交易索引卷。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Aidong Lu;J. Taylor;Charles Hansen;Penny Rheingans;M. Hartner;Johannes Behr;D. Cohen;S. Fleishman;David Levin - 通讯作者:
David Levin
Analysts aren't machines: Inferring frustration through visualization interaction
分析师不是机器:通过可视化交互推断挫败感
- DOI:
10.1109/vast.2011.6102473 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lane Harrison;Wenwen Dou;Aidong Lu;W. Ribarsky;Xiaoyu Wang - 通讯作者:
Xiaoyu Wang
The role of emotion in visualization
情感在可视化中的作用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Aidong Lu;Lane Harrison - 通讯作者:
Lane Harrison
Aidong Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aidong Lu', 18)}}的其他基金
Convergence Accelerator Phase I(RAISE): Smart Platform of Personalized Learning, Assessment and Prediction for Future Career Training of Skilled Workers
融合加速器第一期(RAISE):技能工人未来职业培训个性化学习、评估和预测的智能平台
- 批准号:
1937010 - 财政年份:2019
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
FW-HTF: Future of Firefighting and Career Training - Advancing Cognitive, Communication, and Decision Making Capabilities of Firefighters
FW-HTF:消防和职业培训的未来 - 提高消防员的认知、沟通和决策能力
- 批准号:
1840080 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
1661280 - 财政年份:2017
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
- 批准号:
1629913 - 财政年份:2016
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Bridging Security Primitives and Protocols: A Digital LEGO Set for Information Assurance Courses
连接安全原语和协议:用于信息保障课程的数字乐高套装
- 批准号:
0633150 - 财政年份:2007
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
相似海外基金
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
- 批准号:
1937622 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
- 批准号:
1834213 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics
TWC:媒介:协作:Seal:AnaLytics 的安全引擎 - 从安全相似性搜索到安全数据分析
- 批准号:
1929901 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1748127 - 财政年份:2017
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Dollars for Hertz: Making Trustworthy Spectrum Sharing Technically and Economically Viable
TWC SBE:媒介:协作:赫兹美元:使值得信赖的频谱共享在技术上和经济上可行
- 批准号:
1801986 - 财政年份:2017
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1564104 - 财政年份:2016
- 资助金额:
$ 34.34万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based Secure Computation
TWC:媒介:协作:基于 RAM 的安全计算的新协议和系统
- 批准号:
1562888 - 财政年份:2016
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant