Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets

合作研究:ABI 创新:大规模神经形态数据集的计算探索

基本信息

  • 批准号:
    1661280
  • 负责人:
  • 金额:
    $ 38.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Analyzing single neuron's property is a fundamental task to understand the nervous system and brain working mechanism. Investigating neuron morphology is an effective way to analyze neurons, since it plays a major role in determining neurons' properties. Recently, the ever-increasing neuron databases have greatly facilitated the research of neuron morphology. However, the sheer volume and complexity of these data pose significant challenges for computational analysis, preventing the realization of the full potential of such data. This interdisciplinary project will seek for new avenue to assemble the massive neuron morphologies and provide a unified framework for neuroscientists to explore and analyze different types of neurons. The research is able to tackle many challenges in neuroscience which are hard to solve with previous methods, including fine-grained neuron identification, latent pattern discovery and exploration, etc. The large-scale methods being developed will be particularly beneficial in the future of neuroscience, since more and more neurons are reconstructed and added to the databases. The computational methods and tools developed are very likely to be applicable for solving other bioinformatics problems, especially those dealing with large-scale datasets. The broader impact of this project not only includes educational support for undergraduate researchers and high school students, particularly women and those underrepresented groups, but also contributes to the research of neuroscience and other STEM fields.The long-term goal of this project is to develop effective computational methods and tools for neuroscientists to interactively explore large-scale neuron databases with ultra-fine-grained accuracy, in real-time. This research has a strong multidisciplinary component that involves a nexus ideas from machine learning, information retrieval, and neuroinformatics. Particularly, novel ideas will be implemented in three inter-related components through the whole framework. The first one addresses the accurate and efficient neuron reconstruction and tracing based on deep learning models. The second addresses the efficient discovery of relevant instances among large-size neuron databases via multi-modal and online binary coding methods. The third part addresses intelligent visualization and interaction schemes for knowledge discovery and mining, equipped with interactive coding that can incorporate domain experts' feedback to enhance the query algorithms for fine-tuned results. Compared with previous methods and systems, this project will open a new avenue to assist neuroscientists analyzing and exploring large-scale neuron databases with high efficiency, accuracy, and robustness. The performance of proposed methods will be validated using public neuro-morphological databases (e.g., NeuroMorpho, BigNeuron) and compared with several benchmarks. The effectiveness of the tools to be developed will be evaluated by neuroscientists on domain-specific hypothesis-driven applications. The outcome of the project will be made available at the following websites: http://webpages.uncc.edu/~szhang16/ and https://github.com/divelab/.
分析单个神经元的性质是了解神经系统和大脑工作机制的基础任务。研究神经元形态是分析神经元的一种有效方法,在确定神经元的性质方面起着重要作用。近年来,不断增加的神经元数据库极大地促进了神经元形态学的研究。然而,这些数据的绝对数量和复杂性对计算分析构成了重大挑战,阻碍了这些数据的全部潜力的实现。这个跨学科的项目将寻求新的途径来组装大量的神经元形态,并为神经科学家探索和分析不同类型的神经元提供一个统一的框架。该研究能够解决以往方法难以解决的许多神经科学难题,包括细粒度神经元识别、潜在模式发现和探索等。正在开发的大规模方法将对神经科学的未来特别有益,因为越来越多的神经元被重建并添加到数据库中。所开发的计算方法和工具很可能适用于解决其他生物信息学问题,特别是那些处理大规模数据集的问题。该项目的广泛影响不仅包括对本科研究人员和高中生的教育支持,特别是女性和那些代表性不足的群体,而且还有助于神经科学和其他STEM领域的研究。该项目的长期目标是为神经科学家开发有效的计算方法和工具,以超细粒度的准确性实时交互地探索大规模神经元数据库。这项研究具有很强的多学科组成部分,涉及机器学习,信息检索和神经信息学的联系思想。特别是,新颖的想法将通过整个框架在三个相互关联的组件中实现。第一部分解决了基于深度学习模型的准确高效的神经元重建和跟踪问题。第二部分解决了通过多模态和在线二进制编码方法在大型神经元数据库中有效发现相关实例的问题。第三部分讨论了用于知识发现和挖掘的智能可视化和交互方案,配备了可结合领域专家反馈的交互式编码,以增强查询算法以获得微调结果。与以往的方法和系统相比,该项目将为帮助神经科学家高效、准确、鲁棒地分析和探索大规模神经元数据库开辟一条新的途径。所提出的方法的性能将使用公共神经形态学数据库(例如,NeuroMorpho, BigNeuron)进行验证,并与几个基准进行比较。要开发的工具的有效性将由神经科学家对特定领域的假设驱动应用进行评估。该项目的结果将在以下网站上公布:http://webpages.uncc.edu/~szhang16/和https://github.com/divelab/。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Hierarchical and Shared Features for Improving 3D Neuron Reconstruction
Towards computational analytics of 3D neuron images using deep adversarial learning
使用深度对抗学习对 3D 神经元图像进行计算分析
  • DOI:
    10.1016/j.neucom.2020.03.129
  • 发表时间:
    2021-02-13
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Li, Zhongyu;Fan, Xiayue;Fang, Chaowei
  • 通讯作者:
    Fang, Chaowei
ImWeb: cross-platform immersive web browsing for online 3D neuron database exploration
ImWeb:用于在线 3D 神经元数据库探索的跨平台沉浸式网页浏览
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality
  • DOI:
    10.1007/s12021-018-9361-5
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li, Zhongyu;Butler, Erik;Zhang, Shaoting
  • 通讯作者:
    Zhang, Shaoting
Computational modeling of cellular structures using conditional deep generative networks
  • DOI:
    10.1093/bioinformatics/bty923
  • 发表时间:
    2019-06-15
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Yuan, Hao;Cai, Lei;Ji, Shuiwang
  • 通讯作者:
    Ji, Shuiwang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aidong Lu其他文献

Object-based Visual Attention Quantification using Head Orientation in VR Applications
在 VR 应用中使用头部方向进行基于对象的视觉注意力量化
Personal Movie Recommendation Visualization from Rating Streams Kodzo Webga
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Lu
  • 通讯作者:
    Aidong Lu
2003 Index IEEE Transactions on Visualization and Computer Graphics Vol. 9
2003 年 IEEE 可视化和计算机图形学交易索引卷。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Lu;J. Taylor;Charles Hansen;Penny Rheingans;M. Hartner;Johannes Behr;D. Cohen;S. Fleishman;David Levin
  • 通讯作者:
    David Levin
Analysts aren't machines: Inferring frustration through visualization interaction
分析师不是机器:通过可视化交互推断挫败感
The role of emotion in visualization
情感在可视化中的作用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Lu;Lane Harrison
  • 通讯作者:
    Lane Harrison

Aidong Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aidong Lu', 18)}}的其他基金

Convergence Accelerator Phase I(RAISE): Smart Platform of Personalized Learning, Assessment and Prediction for Future Career Training of Skilled Workers
融合加速器第一期(RAISE):技能工人未来职业培训个性化学习、评估和预测的智能平台
  • 批准号:
    1937010
  • 财政年份:
    2019
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
FW-HTF: Future of Firefighting and Career Training - Advancing Cognitive, Communication, and Decision Making Capabilities of Firefighters
FW-HTF:消防和职业培训的未来 - 提高消防员的认知、沟通和决策能力
  • 批准号:
    1840080
  • 财政年份:
    2018
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
  • 批准号:
    1629913
  • 财政年份:
    2016
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564039
  • 财政年份:
    2016
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Bridging Security Primitives and Protocols: A Digital LEGO Set for Information Assurance Courses
连接安全原语和协议:用于信息保障课程的数字乐高套装
  • 批准号:
    0633150
  • 财政年份:
    2007
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
  • 批准号:
    1854685
  • 财政年份:
    2018
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 38.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了