FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
基本信息
- 批准号:1564281
- 负责人:
- 金额:$ 33.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Approximation defines our world. For example, the letters on this screen have smooth curves and bends. But zoom in and all you see are squares: pixels. The smaller the pixels (i.e., the finer the approximation), the smoother a curve looks. Add three colors and suddenly we can approximate a rainbow. In a sense, science is all about refining and improving approximations to reality. Take Newtonian physics, for example. It works great at medium scales, but breaks down when things are too big or too small. Einstein's relativity and quantum mechanics work much better at those scales. And these theories require sophisticated mathematics. This focused research group project addresses several outstanding questions in operator algebras and their analogies in other areas of mathematics.Operator algebras arose as a framework for quantum mechanics. Over the years many classical theories were extended to this noncommutative context: geometry, topology, probability and more. The PIs will spearhead an international effort to capitalize on recent connections between operator algebras and other areas such as dynamics, measure theory, coarse geometry and K-theory. Specifically, the PIs shall push analogies between nuclear dimension and asymptotic dimension, two notions defined via approximation and encompassing a huge swath of examples, to address K-theoretic questions such as the Universal Coefficient Theorem and the Baum-Connes and Farrell-Jones conjectures.
近似定义了我们的世界。例如,这个屏幕上的字母有平滑的曲线和弯曲。但是放大后你看到的都是正方形:像素。像素越小(即,近似越精细),曲线看起来越平滑。把三种颜色加起来,我们就能突然看到彩虹。从某种意义上说,科学就是提炼和改进接近现实的东西。以牛顿物理学为例。它在中等规模下工作得很好,但当事情太大或太小时就会崩溃。爱因斯坦的相对论和量子力学在这些尺度上工作得更好。这些理论需要复杂的数学。这个研究小组的项目主要解决算子代数中的几个突出问题以及它们在其他数学领域的类比。算子代数作为量子力学的框架而出现。多年来,许多经典理论被扩展到这个非交换的背景下:几何,拓扑,概率和更多。PI将率先国际努力,利用最近的运营商代数和其他领域,如动力学,测度理论,粗糙几何和K理论之间的联系。具体来说,PI将推动核维数和渐近维数之间的类比,这两个概念通过近似定义,并包含大量的例子,以解决K理论问题,如泛系数定理和鲍姆-康纳斯和法雷尔-琼斯定理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rufus Willett其他文献
Roe $$C^*$$ -algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds
- DOI:
10.1007/s00209-018-2064-7 - 发表时间:
2018-06-11 - 期刊:
- 影响因子:1.000
- 作者:
Xiang Tang;Rufus Willett;Yi-Jun Yao - 通讯作者:
Yi-Jun Yao
Coarse groupoid cohomology and Connes-Chern character (in Chinese)
粗群群上同调和Connes-Chern特征
- DOI:
10.1360/n012017-00123 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiang Tang;Rufus Willett;Yi-Jun Yao - 通讯作者:
Yi-Jun Yao
Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and $$C^*$$ -algebras
- DOI:
10.1007/s00208-016-1395-0 - 发表时间:
2016-03-28 - 期刊:
- 影响因子:1.400
- 作者:
Erik Guentner;Rufus Willett;Guoliang Yu - 通讯作者:
Guoliang Yu
Rufus Willett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rufus Willett', 18)}}的其他基金
Approximate Commutators and K-theory
近似换向器和 K 理论
- 批准号:
2247968 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
Coarse Geometry, Discrete Groups, and Operator Algebras
粗略几何、离散群和算子代数
- 批准号:
1101174 - 财政年份:2011
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
Coarse Geometry, Discrete Groups, and Operator Algebras
粗略几何、离散群和算子代数
- 批准号:
1229939 - 财政年份:2011
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant














{{item.name}}会员




