Dynamics, Geometry, and K-Theory
动力学、几何和 K 理论
基本信息
- 批准号:1401126
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Manifolds are geometric objects that can be parametrized using the standard numerical variables of algebra and calculus. They are fundamental objects for much of modern mathematics and its applications to the other sciences, where they model physical space as well as many important data sets. The principal investigator is planning to study properties of higher dimensional manifolds. Here "higher dimensional" means that at least five variables are needed to parametrize the manifold (think of a data set depending on five or more variables). The extra flexibility inherent in a larger number of variables means that many more tools can be brought to bear on problems. The geometry of the expanding networks that are important in communications theory and the theory of dynamical systems (i.e.,change under symmetries of a system) are particularly important tools for the project. Throughout the period of the project the principal investigator intends to mentor young scientists through their involvement in the research, and to continue to work on structural improvements to mathematical education and research in Hawaii.One of the most important invariants of a manifold is its fundamental group, which governs the way loops can be formed inside the manifold. Associated to fundamental groups are algebraic group rings and analytic group operator algebras. The theory of linear algebra over group rings and group operator algebras is organized by their K-theory, and understanding the associated K-groups is a difficult problem that is fundamental to the understanding of higher dimensional manifolds via such problems as the Novikov and Borel conjectures in topological classification and the Gromov-Lawson conjecture in differential geometry. The Baum-Connes and Farrell-Jones conjectures postulate techniques for computing K-theory and anchor the current approach to the problems in manifold theory mentioned earlier. The principal investigator intends to use techniques from index theory of elliptic differential operators, operator algebras, topological dynamical systems, metric geometry of expanding networks, and representation theory to study these conjectures and related issues.
流形是可以使用代数和微积分的标准数值变量参数化的几何对象。它们是许多现代数学及其在其他科学中的应用的基本对象,在这些科学中,它们对物理空间以及许多重要的数据集进行建模。 主要研究者计划研究高维流形的性质。这里的“高维”意味着至少需要五个变量来参数化流形(考虑一个依赖于五个或更多变量的数据集)。大量变量所固有的额外灵活性意味着可以使用更多的工具来解决问题。在通信理论和动力系统理论中很重要的扩展网络的几何形状(即,系统对称下的变化)对于该项目来说是特别重要的工具。在整个项目期间,首席研究员打算指导年轻科学家,通过他们参与研究,并继续致力于结构改进的数学教育和研究在夏威夷。流形的最重要的不变量之一是它的基本群,它支配着流形内部可以形成循环的方式。与基本群相关的是代数群环和解析群算子代数。群环和群算子代数上的线性代数理论是由它们的K-理论组织的,而理解相关的K-群是一个困难的问题,它是通过拓扑分类中的诺维科夫和波莱尔猜想以及微分几何中的格罗莫夫-劳森猜想等问题理解高维流形的基础。Baum-Connes和Farrell-Jones假设了计算K理论的技术,并锚了前面提到的流形理论中问题的当前方法。主要研究人员打算使用的技术,从指数理论的椭圆微分算子,算子代数,拓扑动力系统,度量几何的扩展网络,和表示理论来研究这些结构和相关问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rufus Willett其他文献
Roe $$C^*$$ -algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds
- DOI:
10.1007/s00209-018-2064-7 - 发表时间:
2018-06-11 - 期刊:
- 影响因子:1.000
- 作者:
Xiang Tang;Rufus Willett;Yi-Jun Yao - 通讯作者:
Yi-Jun Yao
Coarse groupoid cohomology and Connes-Chern character (in Chinese)
粗群群上同调和Connes-Chern特征
- DOI:
10.1360/n012017-00123 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiang Tang;Rufus Willett;Yi-Jun Yao - 通讯作者:
Yi-Jun Yao
Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and $$C^*$$ -algebras
- DOI:
10.1007/s00208-016-1395-0 - 发表时间:
2016-03-28 - 期刊:
- 影响因子:1.400
- 作者:
Erik Guentner;Rufus Willett;Guoliang Yu - 通讯作者:
Guoliang Yu
Rufus Willett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rufus Willett', 18)}}的其他基金
Approximate Commutators and K-theory
近似换向器和 K 理论
- 批准号:
2247968 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
- 批准号:
1564281 - 财政年份:2016
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Coarse Geometry, Discrete Groups, and Operator Algebras
粗略几何、离散群和算子代数
- 批准号:
1101174 - 财政年份:2011
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Coarse Geometry, Discrete Groups, and Operator Algebras
粗略几何、离散群和算子代数
- 批准号:
1229939 - 财政年份:2011
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Dynamics and Hodge theory: Uniformization and Bialgebraic Geometry
动力学和霍奇理论:均匀化和双代数几何
- 批准号:
2305394 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Number Theory, Geometry, and Dynamics
数论、几何和动力学
- 批准号:
2302641 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
- 批准号:
21K03269 - 财政年份:2021
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics in Hyperbolic Geometry and Teichmuller Theory
双曲几何动力学和泰希米勒理论
- 批准号:
1308125 - 财政年份:2013
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Symplectic Geometry-Theory and Applications to Dynamics (B08)
辛几何理论及其在动力学中的应用(B08)
- 批准号:
218623147 - 财政年份:2012
- 资助金额:
$ 12.6万 - 项目类别:
Collaborative Research Centres
Pluripotential Theory and Applications to Geometry, Number Theory, and Dynamics
多能理论及其在几何、数论和动力学中的应用
- 批准号:
0900934 - 财政年份:2009
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
CAREER: Knot Theory and Dynamics in Contact Geometry
职业:接触几何中的结理论和动力学
- 批准号:
0707509 - 财政年份:2006
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant














{{item.name}}会员




