FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
基本信息
- 批准号:1564398
- 负责人:
- 金额:$ 37.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Approximation defines our world. For example, the letters on this screen have smooth curves and bends. But zoom in and all you see are squares: pixels. The smaller the pixels (i.e., the finer the approximation), the smoother a curve looks. Add three colors and suddenly we can approximate a rainbow. In a sense, science is all about refining and improving approximations to reality. Take Newtonian physics, for example. It works great at medium scales, but breaks down when things are too big or too small. Einstein's relativity and quantum mechanics work much better at those scales. And these theories require sophisticated mathematics. This focused research group project addresses several outstanding questions in operator algebras and their analogies in other areas of mathematics.Operator algebras arose as a framework for quantum mechanics. Over the years many classical theories were extended to this noncommutative context: geometry, topology, probability and more. The PIs will spearhead an international effort to capitalize on recent connections between operator algebras and other areas such as dynamics, measure theory, coarse geometry and K-theory. Specifically, the PIs shall push analogies between nuclear dimension and asymptotic dimension, two notions defined via approximation and encompassing a huge swath of examples, to address K-theoretic questions such as the Universal Coefficient Theorem and the Baum-Connes and Farrell-Jones conjectures.
近似定义了我们的世界。例如,这个屏幕上的字母有光滑的曲线和弯曲。但放大后,你看到的都是正方形:像素。像素越小(即近似越精细),曲线看起来就越平滑。加上三种颜色,我们就可以近似地看到彩虹。从某种意义上说,科学就是精炼和改进对现实的近似。以牛顿物理学为例。它在中等规模下工作得很好,但当事物太大或太小时就会崩溃。爱因斯坦的相对论和量子力学在这样的尺度下工作得更好。这些理论需要复杂的数学。这个集中的研究小组项目解决了算子代数及其在其他数学领域的类比中的几个突出问题。算符代数作为量子力学的框架而出现。多年来,许多经典理论被扩展到这种非交换的背景下:几何、拓扑、概率等等。pi将引领国际努力,利用算子代数与其他领域(如动力学、测量理论、粗糙几何和k理论)之间的最新联系。具体来说,pi将推动核维度和渐近维度之间的类比,这两个概念是通过近似定义的,包含了大量的例子,以解决k理论问题,如普适系数定理和Baum-Connes和Farrell-Jones猜想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoliang Yu其他文献
New icosahedra-based B4N phases by particle swarm optimization
通过粒子群优化构建新的基于二十面体的 B4N 相
- DOI:
10.1016/j.jallcom.2020.157255 - 发表时间:
2021 - 期刊:
- 影响因子:6.2
- 作者:
Xinxin Zhang;Guoliang Yu;Taimin Cheng;Yu Zhao;Quan Li - 通讯作者:
Quan Li
Electron Deficiency but Semiconductive Diamond-like B2CN Originated from Three-Center Bonds
源自三中心键的缺电子但半导体类金刚石B2CN
- DOI:
10.1039/d0cp05793b - 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Xinxin Zhang;Guoliang Yu;Hui Chen;Yu Zhao;Taimin Cheng;Quan Li - 通讯作者:
Quan Li
The coarse Novikov conjecture and Banach spaces with Property (H)
粗糙的诺维科夫猜想和具有性质 (H) 的巴纳赫空间
- DOI:
10.1016/j.jfa.2015.02.001 - 发表时间:
2015-05 - 期刊:
- 影响因子:1.7
- 作者:
Xiaoman Chen;Qin Wang;Guoliang Yu - 通讯作者:
Guoliang Yu
Covering complexity, scalar curvature, and quantitative $K$-theory
涵盖复杂性、标量曲率和定量 $K$ 理论
- DOI:
10.4310/pamq.2023.v19.n6.a13 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Haoyang Guo;Guoliang Yu - 通讯作者:
Guoliang Yu
Effects of concealable stigma for learning disabilities
隐藏的耻辱对学习障碍的影响
- DOI:
10.2224/sbp.2008.36.9.1179 - 发表时间:
2008 - 期刊:
- 影响因子:1.3
- 作者:
Jun;Baoshan Zhang;Guoliang Yu - 通讯作者:
Guoliang Yu
Guoliang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoliang Yu', 18)}}的其他基金
Quantitative Operator K-theory and Applications
定量算子K理论及应用
- 批准号:
2247313 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Higher Invariants of Elliptic Operators and Applications
椭圆算子的更高不变量及其应用
- 批准号:
2000082 - 财政年份:2020
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
K-Theory of Operator Algebras and Its Applications
算子代数的K理论及其应用
- 批准号:
1700021 - 财政年份:2017
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
K-theory of Operator Algebras and Its Applications to Geometry and Topology
算子代数的K理论及其在几何和拓扑中的应用
- 批准号:
1362772 - 财政年份:2014
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
Noncommutative Geometry Festival, April 30 - May 3, 2014.
非交换几何节,2014 年 4 月 30 日至 5 月 3 日。
- 批准号:
1430907 - 财政年份:2014
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
Operator K-theory and its applications to geometry and topology
算子 K 理论及其在几何和拓扑中的应用
- 批准号:
1342083 - 财政年份:2013
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
Operator K-theory and its applications to geometry and topology
算子 K 理论及其在几何和拓扑中的应用
- 批准号:
1101195 - 财政年份:2011
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
Noncommutative Geometry at Fields Institute, May 2008
非交换几何,菲尔兹研究所,2008 年 5 月
- 批准号:
0801237 - 财政年份:2008
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
K-theory of Operator Algebras and its Applications to Geometry and Topology
算子代数的K理论及其在几何和拓扑中的应用
- 批准号:
0600216 - 财政年份:2006
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
Research Training Group in Noncommutative Geometry
非交换几何研究训练组
- 批准号:
0353640 - 财政年份:2004
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 37.7万 - 项目类别:
Continuing Grant














{{item.name}}会员




