K-theory of Operator Algebras and Its Applications to Geometry and Topology
算子代数的K理论及其在几何和拓扑中的应用
基本信息
- 批准号:1362772
- 负责人:
- 金额:$ 33.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In classical geometry, one studies geometric objects whose coordinates commute. Noncommutative geometry is a mathematical theory specifically designed to handle "geometric objects" whose coordinates do not commute but which do occur naturally in mathematics and physics. In the last decade or so, with the help of new ideas from noncommutative geometry, there have been a series of advances towards the solutions of long-standing problems in classical geometry and topology. Higher index theory serves as a bridge between noncommutative geometry and classical geometry and topology. The principal investigator and his students plan to apply noncommutative geometry methods to study problems in differential geometry and topology.The K-groups of certain operator algebras are receptacles of higher indices of elliptic differential operators and have important applications to problems in differential geometry and in the topology of manifolds. Examples of such applications include estimation of the size of the moduli space of all Riemannian metrics with positive scalar curvature and questions concerning the rigidity or nonrigidity of a manifold. The principal investigator intends to apply the techniques of controlled operator K-theory, dynamic complexity, and finite embeddability into Banach spaces to study K-theory of operator algebras and higher index theory. He also intends to apply noncommutative geometry methods to study analysis on infinite-dimensional spaces (e.g., loop spaces of manifolds).
在经典几何中,人们研究坐标可交换的几何对象。非对易几何(英语:Noncommutative geometry)是一种数学理论,专门设计来处理“几何对象”,其坐标不对易,但在数学和物理中自然发生。在过去十年左右的时间里,在非对易几何新思想的帮助下,经典几何和拓扑学中长期存在的问题的解决取得了一系列进展。高次指数理论是非对易几何与经典几何、拓扑之间的桥梁。主要研究者和他的学生计划应用非交换几何方法来研究微分几何和拓扑学问题。某些算子代数的K-群是椭圆微分算子的高指数的容器,在微分几何和流形拓扑学问题中有重要的应用。这样的应用的例子包括估计的大小的模空间的所有黎曼度量与正标量曲率和问题的刚性或nonrigidity的一个流形。主要研究者打算将受控算子K理论,动态复杂性和有限嵌入性技术应用到Banach空间中,以研究算子代数的K理论和高指标理论。他还打算应用非交换几何方法来研究无限维空间的分析(例如,流形的循环空间)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoliang Yu其他文献
New icosahedra-based B4N phases by particle swarm optimization
通过粒子群优化构建新的基于二十面体的 B4N 相
- DOI:
10.1016/j.jallcom.2020.157255 - 发表时间:
2021 - 期刊:
- 影响因子:6.2
- 作者:
Xinxin Zhang;Guoliang Yu;Taimin Cheng;Yu Zhao;Quan Li - 通讯作者:
Quan Li
Neostriatal Neurons Modulation in Developing 2 and Its Dopaminergic D Channel Current
新纹状体神经元发育中的调节2及其多巴胺能D通道电流
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
E. Galarraga;Jose Bargas Humberto Salgado;T. Perez;Wei Wei;Guoliang Yu;Shengyuan Ding;F. Zhou;O. Hernández;D. Tapia;Ricardo Hernández;J. J. Aceves;P. Rueda - 通讯作者:
P. Rueda
Loneliness, peer acceptance, and family functioning of Chinese children with learning disabilities: Characteristics and relationships
中国学习障碍儿童的孤独感、同伴接受度和家庭功能:特征和关系
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Guoliang Yu;Yaming Zhang;R. Yan - 通讯作者:
R. Yan
Effects of concealable stigma for learning disabilities
隐藏的耻辱对学习障碍的影响
- DOI:
10.2224/sbp.2008.36.9.1179 - 发表时间:
2008 - 期刊:
- 影响因子:1.3
- 作者:
Jun;Baoshan Zhang;Guoliang Yu - 通讯作者:
Guoliang Yu
Covering complexity, scalar curvature, and quantitative $K$-theory
涵盖复杂性、标量曲率和定量 $K$ 理论
- DOI:
10.4310/pamq.2023.v19.n6.a13 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Haoyang Guo;Guoliang Yu - 通讯作者:
Guoliang Yu
Guoliang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoliang Yu', 18)}}的其他基金
Quantitative Operator K-theory and Applications
定量算子K理论及应用
- 批准号:
2247313 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Higher Invariants of Elliptic Operators and Applications
椭圆算子的更高不变量及其应用
- 批准号:
2000082 - 财政年份:2020
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
K-Theory of Operator Algebras and Its Applications
算子代数的K理论及其应用
- 批准号:
1700021 - 财政年份:2017
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
- 批准号:
1564398 - 财政年份:2016
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Noncommutative Geometry Festival, April 30 - May 3, 2014.
非交换几何节,2014 年 4 月 30 日至 5 月 3 日。
- 批准号:
1430907 - 财政年份:2014
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
Operator K-theory and its applications to geometry and topology
算子 K 理论及其在几何和拓扑中的应用
- 批准号:
1342083 - 财政年份:2013
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Operator K-theory and its applications to geometry and topology
算子 K 理论及其在几何和拓扑中的应用
- 批准号:
1101195 - 财政年份:2011
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Noncommutative Geometry at Fields Institute, May 2008
非交换几何,菲尔兹研究所,2008 年 5 月
- 批准号:
0801237 - 财政年份:2008
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
K-theory of Operator Algebras and its Applications to Geometry and Topology
算子代数的K理论及其在几何和拓扑中的应用
- 批准号:
0600216 - 财政年份:2006
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
Research Training Group in Noncommutative Geometry
非交换几何研究训练组
- 批准号:
0353640 - 财政年份:2004
- 资助金额:
$ 33.21万 - 项目类别:
Standard Grant
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 33.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 33.21万 - 项目类别:
Continuing Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Operator Theory and Operator Algebras
算子理论和算子代数
- 批准号:
RGPIN-2020-03984 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Model theory and operator algebras
模型理论和算子代数
- 批准号:
RGPIN-2018-05445 - 财政年份:2022
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2021
- 资助金额:
$ 33.21万 - 项目类别:
Discovery Grants Program - Individual