FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
基本信息
- 批准号:1564458
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the field of algebraic geometry, a branch of mathematics studying the geometric structure of solutions of polynomial equations. Many of the questions under study in this project are motivated by string theory, a branch of theoretical physics connected with the structure of elementary particles. This project aims to significantly enhance the intensive and fruitful interaction between cutting edge research in enumerative algebraic geometry and theoretical physics. The research aims to extend mathematical developments that verify and generalize conjectures originating from physics, and the work is expected to significantly impact development of the physical theory as well. Through conferences, a summer school, seminars, and research involvement, this project provides unique opportunities for a new generation of mathematicians to obtain the interdisciplinary knowledge and skills needed to work in this exciting research area.The aim of the project is to study enumerative invariants in the broad sense and their dependence on various stability conditions, as well as dualities relating different enumerative invariants. The investigators plan to further develop the theory of Gauged Linear Sigma Models (GLSM) and will study the epsilon-wall-crossing conjecture and zeta-wall-crossing conjecture at all genera; Gromov-Witten (GW) and quasimap invariants are related by a sequence of epsilon-wall-crossing, whereas the Calabi-Yau/Landau-Ginzburg correspondence (relating GW invariants and FJRW invariants) and Pfaffian/Grassmannian correspondence are examples of zeta-wall-crossing. The investigators are developing the theory of Mixed-Spin-P (MSP) fields, to interpolate GW theory of quintic threefolds and FJRW theory of Fermat quintic polynomials, and to study algebraic structures of higher genus GW and FJRW invariants. The new theories of GLSM and MSP fields will provide new tools to attack the central and longstanding problem of computing higher genus GW invariants of compact Calabi-Yau threefolds. The investigators have been investigating K-theoretic Donaldson-Thomas invariants of threefolds, as well as GW and quasimap invariants of Nakajima quiver varieties. Because some of conjectures motivated by theoretical physics can only be properly formulated in terms of K-theoretic enumerative invariants, they plan to study dualities relating K-theoretic enumerative invariants of different geometries, and to lift results on traditional enumerative invariants to the K-theoretic setting.
这个项目涉及代数几何领域,这是数学的一个分支,研究多项式方程解的几何结构。在这个项目中,许多正在研究的问题都是由弦理论激发的,弦理论是理论物理学中与基本粒子结构有关的分支。该项目旨在显著增强枚举代数几何和理论物理前沿研究之间的密集和富有成效的互动。该研究旨在扩展数学发展,以验证和推广源自物理学的理论,预计这项工作也将对物理理论的发展产生重大影响。通过会议,暑期学校,研讨会和研究参与,该项目提供了独特的机会,为新一代的数学家,以获得跨学科的知识和技能,需要在这个令人兴奋的研究领域工作。该项目的目的是研究枚举不变量在广义上和它们的依赖于各种稳定性条件,以及对偶相关的不同枚举不变量。研究人员计划进一步发展规范线性西格玛模型(GLSM)的理论,并将在所有属中研究ε-壁穿越猜想和ζ-壁穿越猜想; Gromov-Witten(GW)和拟映射不变量通过ε-壁交叉序列相关联,而卡拉比-丘/朗道-金兹伯格对应(与GW不变量和FJRW不变量相关)和普夫兰/格拉斯曼对应是zeta壁交叉的例子。研究者们正在发展混合自旋P(MSP)场的理论,插值五次三重的GW理论和费马五次多项式的FJRW理论,研究更高亏格的GW和FJRW不变量的代数结构。GLSM和MSP域的新理论将为求解紧致Calabi-Yau三重域的高亏格GW不变量提供新的工具。研究人员一直在研究三倍的K理论Donaldson-Thomas不变量,以及Nakajima的GW和准映射不变量。由于理论物理学中的一些命题只能用K-理论枚举不变量来表示,他们计划研究不同几何的K-理论枚举不变量的对偶性,并将传统枚举不变量的结果提升到K-理论设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davesh Maulik其他文献
Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds
Calabi-Yau 4 倍的稳定对和 Gopakumar-Vafa 型不变量
- DOI:
10.4171/jems/1110 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Yalong Cao;Davesh Maulik;Yukinobu Toda - 通讯作者:
Yukinobu Toda
The $D$ -equivalence conjecture for hyper-Kähler varieties via hyperholomorphic bundles
通过超全纯丛的超凯勒流形的$D$等价猜想
- DOI:
10.1007/s00222-025-01339-8 - 发表时间:
2025-06-09 - 期刊:
- 影响因子:3.600
- 作者:
Davesh Maulik;Junliang Shen;Qizheng Yin;Ruxuan Zhang - 通讯作者:
Ruxuan Zhang
Algebraic cycles and Hitchin systems
代数环和希钦系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Davesh Maulik;Junliang Shen;Qizheng Yin - 通讯作者:
Qizheng Yin
Richard Thompson's groups and their actions on non-positively curved spaces
理查德·汤普森的群体及其在非正弯曲空间上的行为
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yalong Cao;Davesh Maulik;Yukinobu Toda;加藤本子 - 通讯作者:
加藤本子
Davesh Maulik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davesh Maulik', 18)}}的其他基金
Enumerative geometry of moduli spaces and applications
模空间的枚举几何及其应用
- 批准号:
1645082 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Enumerative geometry of moduli spaces and applications
模空间的枚举几何及其应用
- 批准号:
1405217 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant