Enumerative geometry of moduli spaces and applications

模空间的枚举几何及其应用

基本信息

  • 批准号:
    1645082
  • 负责人:
  • 金额:
    $ 8.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The proposal concerns questions in algebraic geometry, which is the study of solutions to polynomial equations and the geometric properties of the set of such solutions. A common theme of the PI's research is the study of parameter spaces of geometric objects and enumerative questions about them (e.g. counting how many degree 2 polynomials satisfy certain properties). While these questions start innocuously, they quickly become complicated and the modern approach involves a combination of geometric ideas with techniques and conjectures from other areas of mathematics and physics. For example, in one of the topics for proposed research, the PI plans to investigate the relation between certain parameter spaces and questions in knot theory; in previous work, the PI proved a special case of such a relation, motivated by ideas from mathematical physics. In the other research topics, the PI will study similar phenomena; in each case, one expects fruitful feedback in both directions and hopes that new techniques for studying these parameter spaces will develop as a consequence. In addition to the research aspects of this proposal, the PI plans to apply support towards mathematics education at different levels. Planned support includes outreach for middle and high-school women, activities joint with Math for America, and graduate-level courses and summer-school lectures.The focus of this proposal is to study topics in the enumerative geometry of moduli spaces of various objects in algebraic geometry (sheaves, curves, surfaces), as well as questions and applications coming from neighboring fields. The first topic is Donaldson-Thomas theory, where the proposed projects involve extending techniques based on vanishing cycles, with the goal of proving longstanding geometric conjectures in the subject. There are also proposed applications to the study of curve singularities and knot invariants. The second topic is quantum cohomology of quiver varieties; here the PI, jointly with A. Okounkov, has a long-term project relating geometric questions to constructions from quantum groups. The third topic is algebraic surfaces in characteristic p, where the PI plans to study the behavior of cycles in families, using the geometry of Noether-Lefschetz degrees. In this case, the objectives are motivated by understanding consequences of the Tate conjecture in arithmetic geometry.
该建议涉及的问题,代数几何,这是研究解决方案的多项式方程和几何性质的一套这样的解决方案。PI研究的一个共同主题是研究几何对象的参数空间和关于它们的枚举问题(例如计算有多少个2阶多项式满足某些性质)。 虽然这些问题开始时无害,但它们很快变得复杂,现代方法涉及几何思想与其他数学和物理领域的技术和知识的结合。例如,在其中一个提议的研究主题中,PI计划研究某些参数空间与纽结理论中的问题之间的关系;在以前的工作中,PI证明了这种关系的一个特例,其动机是数学物理学的思想。 在其他研究课题中,PI将研究类似的现象;在每种情况下,人们都希望在两个方向上都有富有成效的反馈,并希望研究这些参数空间的新技术将因此而发展。 除了这项建议的研究方面,PI计划对不同层次的数学教育提供支持。计划中的支持包括对初中和高中妇女的宣传,与Math for America联合开展的活动,以及研究生课程和暑期学校讲座。该计划的重点是研究代数几何中各种对象(层、曲线、曲面)的模空间的枚举几何,以及来自邻近领域的问题和应用。 第一个主题是唐纳森-托马斯理论,其中提出的项目涉及基于消失循环的扩展技术,目的是证明该主题中长期存在的几何结构。 也有建议的应用程序的研究曲线奇异性和结不变量。 第二个主题是量子上同调的π品种;这里的PI,与A。Okounkov,有一个长期的项目,涉及几何问题的建设,从量子群。 第三个主题是特征p的代数曲面,PI计划使用Noether-Lefschetz度的几何来研究族中循环的行为。在这种情况下,这些目标的动机是理解后果的泰特猜想算术几何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Davesh Maulik其他文献

Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds
Calabi-Yau 4 倍的稳定对和 Gopakumar-Vafa 型不变量
The $D$ -equivalence conjecture for hyper-Kähler varieties via hyperholomorphic bundles
通过超全纯丛的超凯勒流形的$D$等价猜想
  • DOI:
    10.1007/s00222-025-01339-8
  • 发表时间:
    2025-06-09
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Davesh Maulik;Junliang Shen;Qizheng Yin;Ruxuan Zhang
  • 通讯作者:
    Ruxuan Zhang
Algebraic cycles and Hitchin systems
代数环和希钦系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davesh Maulik;Junliang Shen;Qizheng Yin
  • 通讯作者:
    Qizheng Yin
Richard Thompson's groups and their actions on non-positively curved spaces
理查德·汤普森的群体及其在非正弯曲空间上的行为
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yalong Cao;Davesh Maulik;Yukinobu Toda;加藤本子
  • 通讯作者:
    加藤本子

Davesh Maulik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Davesh Maulik', 18)}}的其他基金

FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
  • 批准号:
    1564458
  • 财政年份:
    2016
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Enumerative geometry of moduli spaces and applications
模空间的枚举几何及其应用
  • 批准号:
    1405217
  • 财政年份:
    2014
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
  • 批准号:
    2309181
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
  • 批准号:
    EP/X002004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Research Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
  • 批准号:
    2302623
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Standard Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
  • 批准号:
    DE220100918
  • 财政年份:
    2023
  • 资助金额:
    $ 8.2万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了