ABI INNOVATION: Characterizing protein-DNA interactions from high-resolution assays
ABI 创新:通过高分辨率测定表征蛋白质-DNA 相互作用
基本信息
- 批准号:1564466
- 负责人:
- 金额:$ 65.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The identity and health of a particular type of cell depends on the proteins carrying out its functions, and how the functions change depends on the cell's environment. Many of the responses in a cell are due to changes in what proteins are produced; cells turn on protein production, or turn it off, when a particular group of proteins, regulatory proteins, interact with the DNA. Regulatory proteins may act alone or in groups to turn genes on and off, and the timing and number of combinations in these binding events can be very complicated. There are experiments that show where a specific protein attaches to the DNA, giving us clues that regulation might be occurring; with improving laboratory methods we are able to find the DNA binding locations (profiles) of more and more proteins very specifically. This research will develop special computational and statistical methods for analyzing all of this data together, so that we can see what combinations of proteins act together to regulate genes. From these results we will understand much more about how gene regulation is working in functioning cells. All products produced by this research will be made freely available and accessible to other researchers and the public. Undergraduate and graduate students will be trained to use these bioinformatics research techniques, and strong efforts will be made to recruit students from under-represented groups. Interesting exercises will be created, based on the research methods and results, for undergraduate bioinformatics students and for students in workshops, as well as lessons suitable for high school students studying genetic regulation in their biology courses. Current bioinformatics analysis techniques do not fully capture the structural information provided by the shape of read distributions produced in high-resolution genomic assays. For example, careful analysis of cross-linking patterns in collections of ChIP-exo datasets can potentially inform which proteins are interacting with one another in higher-order protein-DNA complexes. This project aims to develop a suite of shape-aware machine-learning tools for the analysis of high-resolution protein-DNA binding data that will: 1) deconvolve distinct genomic interaction modes from a single dataset; 2) detect and correct experimental artifacts and biases that arise in the new assays; 3) characterize the organization of higher-order protein-DNA complexes across multiple data types; and 4) detect changes in genomic event locations and interaction modes across multiple experimental conditions. This project will therefore enable integrative models of diverse protein-DNA complexes, directly impacting our understanding of gene regulation in a wide variety of organisms.
特定类型细胞的身份和健康取决于执行其功能的蛋白质,而功能如何变化取决于细胞的环境。细胞中的许多反应都是由于蛋白质产生的变化;当一组特定的蛋白质,调节蛋白质与DNA相互作用时,细胞就会启动蛋白质的产生,或者关闭蛋白质的产生。调节蛋白可以单独或成组地作用以打开和关闭基因,并且这些结合事件中的组合的时间和数量可能非常复杂。 有一些实验显示了特定蛋白质附着在DNA上的位置,为我们提供了可能发生调控的线索;随着实验室方法的改进,我们能够非常特异地找到越来越多蛋白质的DNA结合位置(图谱)。这项研究将开发特殊的计算和统计方法来分析所有这些数据,以便我们可以看到蛋白质的组合一起调节基因。从这些结果中,我们将更多地了解基因调控如何在功能细胞中发挥作用。本研究产生的所有产品将免费提供给其他研究人员和公众。本科生和研究生将接受使用这些生物信息学研究技术的培训,并将努力从代表性不足的群体中招收学生。有趣的练习将根据研究方法和结果,为本科生物信息学学生和研讨会学生创建,以及适合高中生在生物学课程中学习遗传调控的课程。目前的生物信息学分析技术不能完全捕获由高分辨率基因组测定中产生的读段分布的形状提供的结构信息。例如,仔细分析ChIP-exo数据集中的交联模式可以潜在地告知哪些蛋白质在高阶蛋白质-DNA复合物中相互作用。该项目旨在开发一套形状感知的机器学习工具,用于分析高分辨率蛋白质-DNA结合数据,该工具将:1)从单个数据集中解卷积不同的基因组相互作用模式; 2)检测和纠正新测定中出现的实验伪像和偏差; 3)表征跨多种数据类型的高阶蛋白质-DNA复合物的组织;和4)检测在多个实验条件下基因组事件位置和相互作用模式的变化。因此,该项目将实现不同蛋白质-DNA复合物的整合模型,直接影响我们对多种生物体中基因调控的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaun Mahony其他文献
Title Transcription factor binding site identification using the Self-Organizing Map
标题 使用自组织图识别转录因子结合位点
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaun Mahony;D. Hendrix;A. Golden;Terry J. Smith;D. Rokhsar - 通讯作者:
D. Rokhsar
Intragenomic conflict underlies extreme phenotypic plasticity in queen-worker caste determination in honey bees (Apis mellifera)
蜜蜂(Apis mellifera)蜂王-工蜂种姓决定中的极端表型可塑性是基因组内冲突的基础
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Bresnahan;Shaun Mahony;Kate Anton;B. Harpur;C. M. Grozinger - 通讯作者:
C. M. Grozinger
New Life for Savannah River Site
萨凡纳河遗址的新生命
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:10.4
- 作者:
Shaun Mahony;P. Benos - 通讯作者:
P. Benos
Intragenomic conflict associated with extreme phenotypic plasticity in queen-worker caste determination in honey bees (Apis mellifera)
- DOI:
10.1186/s13059-025-03628-0 - 发表时间:
2025-06-18 - 期刊:
- 影响因子:9.400
- 作者:
Sean T. Bresnahan;Shaun Mahony;Kate Anton;Brock Harpur;Christina M. Grozinger - 通讯作者:
Christina M. Grozinger
Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of mouse hematopoietic cells
通过 IDEAS 系统整合 GATA 转录因子和表观基因组描绘了小鼠造血细胞的调控景观
- DOI:
10.1101/730358 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Hardison;Yu Zhang;C. Keller;Guanjue Xiang;Elisabeth F. Heuston;Lin An;J. Lichtenberg;B. Giardine;D. Bodine;Shaun Mahony;Qunhua Li;Feng Yue;M. Weiss;G. Blobel;James Taylor;J. Hughes;D. Higgs;Berthold Gottgens - 通讯作者:
Berthold Gottgens
Shaun Mahony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaun Mahony', 18)}}的其他基金
CAREER: Predicting transcription factor binding dynamics across cell types and species
职业:预测跨细胞类型和物种的转录因子结合动态
- 批准号:
2045500 - 财政年份:2021
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
相似海外基金
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
- 批准号:
ES/Z50239X/1 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
2348780 - 财政年份:2024
- 资助金额:
$ 65.71万 - 项目类别:
Standard Grant