ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data

ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架

基本信息

项目摘要

Microbial communities, or microbiomes, are an essential part of life on Earth. Microbiomes in the natural environment, including those associated with animals and plants, have thousands of interacting microbial species. Microbial communities influence key aspects of host health and behavior. They drive basic biochemical processes in their hosts, such as nutrient processing in the guts and sequestration of carbon in the Earth's oceans. The study of microbiomes has been recently revolutionized by the use of advanced sequencing technologies. However, large-scale sequencing initiatives, such as the Human Microbiome Project and the Earth Microbiome Project, are generating Petabytes (10 to the power of 15 bytes) of data, more than existing analysis tools can handle. The goal of this project is to develop transformative computational methods and implement software tools that enable the analysis of these very large datasets. Specifically, these tools will provide improved methods to organize community gene expression data (metatranscriptomes) into metabolic pathways, which informs predictions of how biochemical processes transform matter and energy. To maximize its impact, the developed software tools will be made available to the research community as stand-alone open source packages and deployed on common cloud computing environments. The project will provide opportunities for mentoring undergraduate and graduate students at Georgia State University, University of Connecticut, and Georgia Tech and promote participation of women and underrepresented groups in bioinformatics research and empirical analysis of community-level sequence (DNA/RNA) datasets. Selected aspects of the proposed research will be incorporated in courses at the three universities, and form the basis of innovative curriculum and educational materials, including the creation of mobile applications. This project brings together an interdisciplinary team of computer scientists and environmental microbiologists to develop and implement computational tools that enable de novo analysis of large multi-sample microbiome sequencing datasets, addressing current challenges in metatranscriptome assembly and inference of metabolic pathway activity. Specific aims of the project include: (i) developing highly scalable algorithms for de novo assembly and quantification from multiple metatranscriptomic samples, (ii) developing highly accurate algorithms for estimation of metabolic pathway activity level and differential activity testing, (iii) developing and validating prototype implementations of developed methods. A distinguishing feature of the developed methods will be their ability to jointly analyze multiple related metatranscriptomic samples. This joint assembly and quantification paradigm is likely to find applications beyond microbiome research, e.g., in the emerging area of single cell genomics. The results of the project, including software packages, research publications, and educational materials, will be made available at http://alan.cs.gsu.edu/NGS/?q=software and http://dna.engr.uconn.edu/?page_id=719
微生物群落或微生物组是地球上生命的重要组成部分。自然环境中的微生物组,包括与动物和植物相关的微生物组,具有数千种相互作用的微生物物种。微生物群落影响宿主健康和行为的关键方面。它们驱动宿主的基本生化过程,例如肠道中的营养加工和地球海洋中的碳封存。最近,先进测序技术的使用彻底改变了微生物组的研究。然而,大规模测序计划,如人类微生物组计划和地球微生物组计划,正在产生PB(10的15次方字节)的数据,超过现有的分析工具可以处理。该项目的目标是开发变革性的计算方法并实现能够分析这些非常大的数据集的软件工具。具体而言,这些工具将提供改进的方法,将社区基因表达数据(元转录组)组织成代谢途径,从而预测生物化学过程如何转化物质和能量。为了最大限度地发挥其影响,开发的软件工具将作为独立的开放源码软件包提供给研究界,并部署在共同的云计算环境中。该项目将为指导格鲁吉亚州立大学、康涅狄格大学和格鲁吉亚理工学院的本科生和研究生提供机会,并促进妇女和代表性不足的群体参与生物信息学研究和社区一级序列(DNA/RNA)数据集的经验分析。拟议研究的选定方面将纳入三所大学的课程,并构成创新课程和教育材料的基础,包括创建移动的应用程序。该项目汇集了一个由计算机科学家和环境微生物学家组成的跨学科团队,开发和实施计算工具,使大型多样本微生物组测序数据集的从头分析成为可能,解决了当前metatranscriptome组装和代谢途径活动推断方面的挑战。该项目的具体目标包括:(i)开发高度可扩展的算法,用于从头组装和从多个元转录组样本定量,(ii)开发高度准确的算法,用于估计代谢途径活性水平和差异活性测试,(iii)开发和验证所开发方法的原型实现。所开发的方法的一个显着特点将是他们能够共同分析多个相关的元转录组样本。这种联合组装和量化范式可能会在微生物组研究之外找到应用,例如,在单细胞基因组学的新兴领域。该项目的成果,包括软件包、研究出版物和教育材料,将在http://alan.cs.gsu.edu/NGS/?上公布。q=软件和http://dna.engr.uconn.edu/?第719页

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking of computational error-correction methods for next-generation sequencing data
  • DOI:
    10.1186/s13059-020-01988-3
  • 发表时间:
    2020-03-17
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Mitchell, Keith;Brito, Jaqueline J.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandr Zelikovskiy其他文献

Aleksandr Zelikovskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandr Zelikovskiy', 18)}}的其他基金

Travel Support: 15th International Symposium on Bioinformatics Research and Applications
差旅支持:第十五届生物信息学研究与应用国际研讨会
  • 批准号:
    1923679
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Software for the Next Generation Sequence Analysis for Homogeneous Populations
I-Corps:用于同质群体的下一代序列分析的软件
  • 批准号:
    1910957
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Support: 12th International Symposium on Bioinformatics Research and Applications
差旅支持:第十二届生物信息学研究与应用国际研讨会
  • 批准号:
    1639612
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data
CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术
  • 批准号:
    1619110
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Support: 11th International Symposium on Bioinformatics Research and Applications
差旅支持:第十一届生物信息学研究与应用国际研讨会
  • 批准号:
    1542617
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Support: 7th International Symposium on Bioinformatics Research and Applications
差旅支持:第七届生物信息学研究与应用国际研讨会
  • 批准号:
    1116001
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Reconstruction of Haplotype Spectra from High-Throughput Sequencing Data
III:小:合作研究:从高通量测序数据重建单倍型谱
  • 批准号:
    0916401
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions for Advanced VLSI Manufacturability
合作研究:先进 VLSI 可制造性的新方向
  • 批准号:
    0429735
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759708
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Automated Prioritization and Design of Experiments to Validate and Improve Mathematical Models of Molecular Regulatory Systems
合作研究:ABI 创新:自动优先排序和实验设计,以验证和改进分子调控系统的数学模型
  • 批准号:
    1759858
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    1759821
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了