Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
基本信息
- 批准号:1759708
- 负责人:
- 金额:$ 7.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forest ecosystems cover a third of the land area of the United States and are a significant economic and cultural resource. Managing forests for the future depends on knowledge of their historical dynamics. For example, after the last Ice Age many species, including trees, generally moved north as environmental conditions became more favorable, leading to large changes in population size and geographic range. Fundamental biological questions about these shifts include: (i) how do plants establish in new locations across great distances in spite of having limited seed dispersal abilities, (ii) to what degree do species travel synchronously as communities or individually, (iii) which species moved the fastest and why, and (iv) where did species reside during the last Ice Age? Traditionally scientists have used one of three types of data to address these questions: specimens from museums and herbaria matched with contemporary environmental data, DNA sequences that hold imprints of recent and past changes, and species' presence in the fossil record including ancient pollen deposited in lake sediments. However, studies based on single data types have not been able to fully resolve the aforementioned questions, largely due to lack of integrative computational methods and infrastructure. This research will develop methods and software that, for the first time, coherently combine the three main data types and existing theory to provide a more comprehensive understanding of species' biogeographic history. Each type of data has different strengths and weaknesses; utilizing the strengths of each will make best use of the total information on species' range shifts. The methods developed will provide the infrastructure needed to leverage "big data" and enable scientific progress on significant, long-standing questions about species historical dynamics, which will serve a variety of scientific communities. This work also serves the national interest, advancing prosperity and welfare by enabling future studies of natural environments which are an important cultural and economic resource. Knowledge gained by using these new methods can help inform management of natural resources (i.e. forests and grasslands) and functioning ecosystems, and identify geographic regions that are resilient to environmental stress or may contain unique genetic resources to help species adapt. These new computational methods will be produced in an open-source, online, documented, and transparent code development system with which anyone can interact, as well as through two interactive workshops that will emphasize participant diversity. This project will also advance science education through broader impacts at multiple educational levels by i) partnering with an established K-12 educational program to teach ecological concepts, ii) designing a course-based undergraduate research experience, iii) producing educational videos and exhibits at two botanical gardens that collectively reach two million visitors, and iv) providing training and mentoring to early career scientists and students. Despite continued improvements in data reliability and accuracy, questions about Quaternary species range shifts remain hotly debated. This debate is fueled in part by known, substantial limitations and biases of the primary data types used to reconstruct biogeographic history (i.e., fossils and inferred paleo-vegetation, current and hindcast species distribution models, and current and ancient genomic data). Conflicting results from past studies regarding the speed of range shifts and location of refugia inferred from different approaches have slowed progress in paleoecology for decades. This project will develop comprehensive, statistically robust informatic tools to coherently integrate the information content of disparate and heretofore disconnected data types and models for inferring species' genetic, demographic, and biogeographic history. The objective of this research is to build informatic infrastructure that will help scientists leverage information from multiple sources spanning space and time to (a) better estimate key demographic parameters, (b) generate maps of species distributions post-glaciation, and (c) account for uncertainty from each data type. The framework is rooted in Approximate Bayesian Computation but with additional modules that will build on the state-of-the-art in biogeographic inference. The informatic improvements will occur in four stages of increasing novelty and data integration, with specific outputs at each stage. The informatic advances will be evaluated for computational efficiency and effectiveness through analyses of both simulated data and an existing empirical dataset for a foundational tree species, green ash, Fraxinus pennsylvanica. This research will help scientists from many fields make the most benefit from the ongoing renaissance in methods and databases in genomics, environmental modeling, and paleo-data to help achieve better understanding of past species' dynamics (demographic growth rates, long distance dispersal, biotic velocities, etc.) at a spatial and temporal resolution that was previously unachievable. The scientific community will be involved in model and software design via open source, community development and coding on GitHub, and two hands-on workshops. Results from this project can be found online at https://github.com/orgs/TIMBERhub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
森林生态系统覆盖了美国陆地面积的三分之一,是重要的经济和文化资源。 未来的森林管理取决于对其历史动态的了解。 例如,在最后一个冰河时代之后,许多物种,包括树木,随着环境条件变得更加有利,通常向北迁移,导致人口规模和地理范围发生巨大变化。 关于这些变化的基本生物学问题包括:(i)尽管种子传播能力有限,但植物如何在新的地点长距离建立,(ii)物种在多大程度上作为群落或个体同步旅行,(iii)哪些物种移动最快,为什么?(iv)在最后一个冰河时期,物种居住在哪里?传统上,科学家们使用三种类型的数据来解决这些问题:博物馆和植物标本馆的标本与当代环境数据相匹配,DNA序列包含最近和过去变化的印记,以及化石记录中的物种存在,包括湖泊沉积物中沉积的古代花粉。然而,基于单一数据类型的研究并不能完全解决上述问题,主要是由于缺乏综合的计算方法和基础设施。这项研究将开发方法和软件,首次将三种主要数据类型和现有理论连贯地联合收割机结合起来,以更全面地了解物种的地理历史。 每种类型的数据都有不同的优点和缺点;利用每种数据的优点将最大限度地利用物种分布范围变化的总信息。所开发的方法将提供利用“大数据”所需的基础设施,并使有关物种历史动态的重大、长期存在的问题能够取得科学进展,这将为各种科学界服务。 这项工作也服务于国家利益,促进繁荣和福利,使未来的研究自然环境,这是一个重要的文化和经济资源。 通过使用这些新方法获得的知识可以帮助为自然资源(即森林和草原)和功能生态系统的管理提供信息,并确定对环境压力具有弹性或可能含有独特遗传资源的地理区域,以帮助物种适应。这些新的计算方法将在一个开源的、在线的、有文件记录的和透明的代码开发系统中产生,任何人都可以与之互动,并通过两个强调参与者多样性的互动研讨会产生。该项目还将通过以下方式在多个教育层面产生更广泛的影响来推进科学教育:i)与一个既定的K-12教育计划合作,教授生态概念,ii)设计基于课程的本科生研究体验,iii)在两个植物园制作教育视频和展览,这些植物园共有200万游客,iv)为早期职业科学家和学生提供培训和指导。尽管数据的可靠性和准确性不断提高,但有关第四纪物种范围变化的问题仍然存在激烈的争论。这场争论部分是由于用于重建地理历史的主要数据类型的已知的、实质性的限制和偏见(即,化石和推断的古植被,当前和事后物种分布模型,以及当前和古代基因组数据)。几十年来,从过去的研究中得出的关于范围转移速度和从不同方法推断的避难所位置的结论减缓了古生态学的进展。该项目将开发全面的,统计上强大的信息工具,以连贯地整合不同的和迄今为止断开的数据类型和模型的信息内容,用于推断物种的遗传,人口统计和地理历史。这项研究的目的是建立信息基础设施,帮助科学家利用跨越空间和时间的多个来源的信息,以(a)更好地估计关键的人口参数,(B)生成冰川后物种分布图,(c)解释每种数据类型的不确定性。该框架植根于近似贝叶斯计算,但有额外的模块,将建立在最先进的地理推理。信息方面的改进将分四个阶段进行,即增加新奇和数据整合,每个阶段都有具体的产出。信息学的进步将评估计算效率和有效性,通过分析模拟数据和现有的经验数据集的基础树种,绿色灰,白蜡树。这项研究将帮助来自许多领域的科学家从基因组学,环境建模和古数据的方法和数据库的不断复兴中获益,以帮助更好地了解过去物种的动态(人口增长率,长距离扩散,生物速度等)。在空间和时间上的分辨率是以前无法实现的。科学界将通过开源、社区开发和GitHub上的编码以及两个动手研讨会参与模型和软件设计。该项目的结果可以在www.example.com网站上找到https://github.com/orgs/TIMBERhub.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Smith其他文献
Adam Smith's moral and political philosophy
亚当·斯密的道德和政治哲学
- DOI:
10.2307/2019387 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Adam Smith;H. Schneider - 通讯作者:
H. Schneider
Noise controls for roof bolting machines
屋顶锚杆机的噪声控制
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
P. Kovalchik;Adam Smith;R. Metetic;J. Peterson - 通讯作者:
J. Peterson
Adam Smith's Social Deception, Individual Deception and Institutions
亚当·斯密的社会欺骗、个人欺骗和制度
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
C. Gerschlager;Adam Smith - 通讯作者:
Adam Smith
The Invisible Hook The Hidden Economics of Pirates
看不见的钩子 海盗的隐藏经济
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Adam Smith;Meet Captain Hook - 通讯作者:
Meet Captain Hook
Adam Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Smith', 18)}}的其他基金
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 7.13万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232694 - 财政年份:2023
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Travel: Student Travel Grant for 2022 Boston Differential Privacy Summer School
旅行:2022 年波士顿差异隐私暑期学校学生旅行补助金
- 批准号:
2227905 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
2308307 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
- 批准号:
2120667 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award:Examination of Multiple Chronologies
博士论文改进奖:多年表审查
- 批准号:
2106251 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ERASE-PFAS: Remediation of Per- and Polyfluoroalkyl Substances in Wastewater using Anaerobic Membrane Bioreactors
合作研究:ERASE-PFAS:使用厌氧膜生物反应器修复废水中的全氟烷基和多氟烷基物质
- 批准号:
2112651 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Foundations of Adaptive Data Analysis
AF:媒介:协作研究:自适应数据分析的基础
- 批准号:
1763786 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Continuing Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
1753060 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: Social brains and solitary bees: A phylogenetic test of the effect of social behavior on brain evolution across multiple gains and losses of sociality
合作研究:社交大脑和独居蜜蜂:社会行为对大脑进化影响的系统发育测试,涉及社交性的多种得失
- 批准号:
1755375 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
- 批准号:
2034568 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
- 批准号:
2209978 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
2021734 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
- 批准号:
2027203 - 财政年份:2019
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
- 批准号:
1756250 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759729 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Standard Grant