Acetylene Hydrogenation on Alloy Catalysts Spanning Ternary Alloy Composition Space

跨越三元合金成分空间的合金催化剂上的乙炔加氢

基本信息

  • 批准号:
    1566228
  • 负责人:
  • 金额:
    $ 62.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Catalysts are used to accelerate production of chemicals in industrial processes, greatly increasing the efficiency of production and providing significant energy savings in chemical manufacturing. Multicomponent alloys, homogeneous mixtures of two or more metals, are used as catalysts in these reactions because they are more effective than any of the pure metal components by itself. The relative metal compositions are variable over a wide range, which presents a challenge in designing alloy catalysts in finding the optimal relative amounts of each metal component for maximum catalyst efficiency. This can become a tedious and time-consuming research activity because it requires the preparation, characterization and catalytic evaluation of hundreds of different alloy catalysts, each with a different composition. Dr. Gellman has invented a rapid, high-throughput method to accelerate the study of three-component (ternary) alloy catalysts over a wide range of possible compositions. Dr. Gellman fabricates a single material in which the composition of the alloy is varied continuously along the material surface. He then uses a number of state-of-the-art spatially-resolved analytical tools. Each measurement probes a catalyst alloy with a different composition. This methods allows 100 catalyst compositions to be prepared at once, then characterized and studied in a fraction of the time that sequential preparation of each composition would allow. Dr. Gellman is using his high-throughput method to understand how the composition of alloy catalysts influences the kinetics and selectivity of acetylene (HCCH) hydrogenation to ethylene (H2CCH2), an important chemical process in polymer production. Ultimately, Dr. Gellman's work may lead to improvement of alloy catalysts for numerous applications and may contribute to clean energy technologies for its relevance to hydrocarbon conversion. In addition to his advancement of the field of catalysis, Dr. Gellman is making broader impacts in his work with students. He mentors female undergraduate students in research to encourage their interest in pursuing advanced degrees in the STEM fields. He also is engaged in public education activities as part of his role as co-Director of the Carnegie Mellon University's Scott Institute for Energy Innovation.Understanding the complexity of multicomponent alloy catalysts is confounded by the experimental challenges of measuring the physical characteristics and the catalytic activities of alloy materials as a function of multidimensional composition. With funding from the Chemical Catalysis Program of the Chemistry Division and the Catalysis and Biocatalysis Program of the Division of Chemical, Bioengineering, Environment and Transport Systems Division, Dr. Andrew Gellman of Carnegie Mellon University addresses this challenge by using a unique set of high-throughput methods developed in his lab. The analysis employs an alloy film containing all possible compositions of alloys in a process called Composition Spread Alloy Films (CSAF). Ternary alloys, CuxAuyPd1-x-y, CuxAgyPd(1-x-y), and AgxAuyPd(1-x-y), are fabricated with x and y varied over the entire compositional range within an approximately 1 cm2 area sample size. Spatially resolved surface analysis tools are used to map alloy characteristics, including bulk composition, surface composition and valence electronic structure, as a function of composition space. A unique, 100 channel microreactor array is then used to make parallel measurements of the kinetics and selectivities of several catalytic processes, HD exchange, ethylene hydrogenation and acetylene hydrogenation, at 100 different alloy compositions. Microkinetic analysis is used to extract the fundamental reaction parameters for elementary mechanistic steps. These measurements establish correlations among kinetic parameters and alloy characteristics and yield insight into rate dependence of individual elementary steps with alloy composition. In addition to his advancement of the field of catalysis, Dr. Gellman is making broader impacts in his work with students. He mentors undergraduate female students in research to encourage their interest in pursuing advanced degrees in the STEM fields. He also is engaged in public education activities as part of his role as co-Director of the Carnegie Mellon University's Scott Institute for Energy Innovation.
催化剂用于加速工业过程中的化学品生产,大大提高了生产效率,并在化学品制造中节省了大量能源。 多组分合金,两种或多种金属的均匀混合物,在这些反应中用作催化剂,因为它们比任何纯金属组分本身更有效。 相对金属组成在宽范围内是可变的,这在设计合金催化剂中提出了在寻找用于最大催化剂效率的每种金属组分的最佳相对量方面的挑战。这可能会成为一项繁琐而耗时的研究活动,因为它需要制备、表征和评估数百种不同的合金催化剂,每种催化剂都具有不同的组成。Gellman博士发明了一种快速、高通量的方法,以加速对多种可能组成的三组分(三元)合金催化剂的研究。 Gellman博士制造了一种单一材料,其中合金的成分沿材料表面连续沿着变化。 然后,他使用了一些最先进的空间解析分析工具。 每次测量探测具有不同组成的催化剂合金。 该方法允许一次制备100种催化剂组合物,然后在顺序制备每种组合物所允许的一小部分时间内进行表征和研究。 Gellman博士正在使用他的高通量方法来了解合金催化剂的组成如何影响乙炔(HCCH)加氢制乙烯(H2 CCH 2)的动力学和选择性,这是聚合物生产中的一个重要化学过程。最终,Gellman博士的工作可能会导致合金催化剂在许多应用中的改进,并可能有助于清洁能源技术的碳氢化合物转化。 除了他在催化领域的进步外,盖尔曼博士还在与学生的工作中产生了更广泛的影响。 他指导女本科生进行研究,以鼓励她们在STEM领域攻读高级学位的兴趣。 作为卡内基梅隆大学斯科特能源创新研究所的联合主任,他还参与了公共教育活动。了解多组分合金催化剂的复杂性是由测量合金材料的物理特性和催化活性作为多维组成的函数的实验挑战所混淆的。在化学部化学催化计划和化学,生物工程,环境和运输系统部的催化和生物催化计划的资助下,卡内基梅隆大学的Andrew Gellman博士通过使用一套独特的高通量方法解决了这一挑战。 该分析采用了一种合金膜,该合金膜包含合金的所有可能成分,其过程称为成分扩散合金膜(CSAF)。 三元合金,CuxAuyPd 1-x-y,CuxAgyPd(1-x-y),和AgxAuyPd(1-x-y),制造与x和y变化的整个组成范围内的一个约1平方厘米的面积的样品尺寸。 空间分辨表面分析工具用于映射合金特性,包括本体组成、表面组成和价电子结构,作为组成空间的函数。 一个独特的,100通道的微反应器阵列,然后用于并行测量的动力学和选择性的几个催化过程,HD交换,乙烯加氢和乙炔加氢,在100个不同的合金组合物。 微观动力学分析是用来提取基本的机械步骤的基本反应参数。这些测量建立了动力学参数和合金特性之间的相关性,并深入了解各个基本步骤与合金成分的速率依赖性。 除了他在催化领域的进步外,盖尔曼博士还在与学生的工作中产生了更广泛的影响。 他指导本科女生进行研究,以鼓励她们对在STEM领域攻读高级学位的兴趣。 他还参与公共教育活动,作为卡内基梅隆大学斯科特能源创新研究所联合主任的一部分。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kinetic Fingerprints of Catalysis by Subsurface Hydrogen
地下氢催化的动力学指纹图谱
  • DOI:
    10.1021/acscatal.8b02168
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Sen, Irem;Gellman, Andrew J.
  • 通讯作者:
    Gellman, Andrew J.
Suppression of B2 phase in Pd Cu1- alloy thin films
Pd Cu1-合金薄膜中B2相的抑制
  • DOI:
    10.1016/j.tsf.2018.10.018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yu, Xiaoxiao;Gellman, Andrew J.
  • 通讯作者:
    Gellman, Andrew J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Gellman其他文献

Chiral surfaces and metal/ceramic heteroepitaxy in the Pt/SrTiO<sub>3</sub>(621) system
  • DOI:
    10.1016/j.susc.2007.02.026
  • 发表时间:
    2007-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew J. Francis;A.J. Koritnik;Andrew Gellman;Paul A. Salvador
  • 通讯作者:
    Paul A. Salvador

Andrew Gellman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Gellman', 18)}}的其他基金

Collaborative Research: Structure Sensitive Surface Chemistry - Small Molecule Activation and Spillover
合作研究:结构敏感表面化学-小分子活化和溢出
  • 批准号:
    2102082
  • 财政年份:
    2021
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Subsurface Hydrogen in a Alloy Hydrogenation Catalysis
合金加氢催化中的地下氢
  • 批准号:
    1954340
  • 财政年份:
    2020
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Design of surface functionality through surface composition and structure
DMREF:协作研究:通过表面成分和结构设计表面功能
  • 批准号:
    1921946
  • 财政年份:
    2019
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure Sensitive Surface Chemistry - Enantioselectivity on Chiral Surfaces
合作研究:结构敏感表面化学 - 手性表面的对映选择性
  • 批准号:
    1764252
  • 财政年份:
    2018
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Continuing Grant
Chemical Reactions at Surfaces Gordon Research Conference and Seminar
表面化学反应戈登研究会议和研讨会
  • 批准号:
    1704871
  • 财政年份:
    2017
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Chemical Reactions at Surfaces GRC/GRS - From Model Studies to Complex Real World Systems, February 7-8, 2015
表面化学反应 GRC/GRS - 从模型研究到复杂的现实世界系统,2015 年 2 月 7-8 日
  • 批准号:
    1461831
  • 财政年份:
    2014
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Collaborative Research: High Throughput Structure Sensitive Surface Chemistry
合作研究:高通量结构敏感表面化学
  • 批准号:
    1012358
  • 财政年份:
    2010
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
MRI: Deveopment of an Apparatus for Deposition of Multi-component Thin Films with Lateral Composition Gradients
MRI:开发具有横向成分梯度的多组分薄膜沉积装置
  • 批准号:
    0923083
  • 财政年份:
    2009
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Collaborative Research: The Structure and Chemistry of Naturally Chiral Metal Surfaces
合作研究:天然手性金属表面的结构和化学
  • 批准号:
    0717951
  • 财政年份:
    2007
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Continuing Grant
The Transition State in Catalysis: Experiment and Computational Modeling
催化中的过渡态:实验和计算模型
  • 批准号:
    0651182
  • 财政年份:
    2007
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant

相似海外基金

Alkyne hydrogenation using alloy nanoparticles on prerovskite supports with low work function
在具有低逸出功的预洛夫钛矿载体上使用合金纳米粒子进行炔烃氢化
  • 批准号:
    23K13600
  • 财政年份:
    2023
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CO2 hydrogenation on multicomponent alloy catalysts
多元合金催化剂上的 CO2 加氢
  • 批准号:
    21K14465
  • 财政年份:
    2021
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The development of metal-nonmetal alloy nanoparticles for the hydrogenation of lignocellulose
用于木质纤维素加氢的金属非金属合金纳米粒子的开发
  • 批准号:
    21K04776
  • 财政年份:
    2021
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subsurface Hydrogen in a Alloy Hydrogenation Catalysis
合金加氢催化中的地下氢
  • 批准号:
    1954340
  • 财政年份:
    2020
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Continuing Grant
SusChEM: Non-precious metal substitution into hydrogenation metal alloy catalysts deposited onto redox active supports for facile nitrate destruction in drinking water
SusChEM:用非贵金属替代沉积在氧化还原活性载体上的氢化金属合金催化剂,以轻松破坏饮用水中的硝酸盐
  • 批准号:
    1922504
  • 财政年份:
    2019
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Standard Grant
Development of Ni alloy catalysts for chemoselective hydrogenation based on coordination theory
基于配位理论的化学选择加氢镍合金催化剂的研制
  • 批准号:
    15K06565
  • 财政年份:
    2015
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Grain Refinement of Al-Mg alloy by Hydrogenation Treatment and Its mechanism Analysis
加氢处理铝镁合金晶粒细化及其机理分析
  • 批准号:
    12650702
  • 财政年份:
    2000
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kinetic Study and Selectovity Control of New Hydrogenation System Using a Hydrogen Storage Alloy (Metal) Sheet
使用储氢合金(金属)片的新型加氢系统的动力学研究和选择性控制
  • 批准号:
    10650815
  • 财政年份:
    1998
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electrochemical Construction of Hydrogenation System Using Active Hydrogen at Hydrogen Storage Alloy/Gas Interphase
储氢合金/气体界面处利用活性氢的电化学构建加氢系统
  • 批准号:
    07651001
  • 财政年份:
    1995
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Influence of Promoters and Poisons on Iron (Alloy) Nanoparticles for the Selective Hydrogenation of Alkynes to Alkenes (C05)
促进剂和毒物对铁(合金)纳米粒子用于炔烃选择性加氢制烯烃(C05)的影响
  • 批准号:
    496711722
  • 财政年份:
  • 资助金额:
    $ 62.81万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了