CRII: AF: Measuring similarity between geometric objects

CRII:AF:测量几何对象之间的相似性

基本信息

  • 批准号:
    1566624
  • 负责人:
  • 金额:
    $ 17.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Measuring similarity between geometric objects is a common task in many applications: detecting change in a medical scan, recognizing and indexing content in an image or video, comparing protein structures, or automatically picking the right object from a conveyor belt. Input images, shapes, or models come in different representations that have to be transformed to compare them to a large database of possibilities. This project explores transformations of certain classes (nearly affine transformations) using tools like limited Frechet distance and small metric distortions. Specific proposed problems include computing Frechet distances between terrains and between polygons with holes. Both fixed parameter tractable exact algorithms and polygonal time approximation algorithms will be studied for these problems. The project will also consider the hardness of approximation. For the topic of metric distortions, the proposed problems include computing metric distortions between simple polygons and between discrete point sets. Both exact and approximation algorithms will be studied. The goal is not only to understand the mathematics behind exact transformations, but also to see if approximate transformations will allow faster algorithms with some quality guarantees; most application of similarity measure at present is heuristic, and does not come with guarantees. Measuring similarity between geometric objects is a fundamental problem and has many applications, so this project, and the students that it trains, will have potential impact on theory and practice in many areas.
测量几何对象之间的相似性是许多应用中的常见任务:检测医学扫描中的变化,识别和索引图像或视频中的内容,比较蛋白质结构,或从传送带上自动拾取正确的对象。输入图像、形状或模型以不同的表示形式出现,必须进行转换以将它们与大型可能性数据库进行比较。这个项目探索了某些类的转换(近仿射转换),使用有限的弗雷歇距离和小度量失真等工具。具体提出的问题包括计算地形之间的弗雷歇距离和多边形之间的洞。固定参数易处理的精确算法和多边形时间近似算法将研究这些问题。该项目还将考虑近似的难度。对于度量失真的主题,所提出的问题包括计算简单多边形之间和离散点集之间的度量失真。精确算法和近似算法都将被研究。我们的目标不仅是理解精确变换背后的数学,而且还要看看近似变换是否会允许更快的算法,并具有一定的质量保证;目前大多数相似性度量的应用都是启发式的,并且没有保证。几何对象之间的相似性度量是一个基本问题,有很多应用,所以这个项目,它培养的学生,将在许多领域的理论和实践产生潜在的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Nayyeri其他文献

Counting and Sampling Minimum Cuts in Genus $$g$$ Graphs
  • DOI:
    10.1007/s00454-014-9623-4
  • 发表时间:
    2014-09-03
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Erin W. Chambers;Kyle Fox;Amir Nayyeri
  • 通讯作者:
    Amir Nayyeri
ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded Treewidth
用于在有界树宽的单纯复形中查找曲面的 ETH-Tight 算法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitchell Black;Nello Blaser;Amir Nayyeri;Erlend Raa V
  • 通讯作者:
    Erlend Raa V
Fréchet Edit Distance
Fréchet 编辑距离

Amir Nayyeri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Nayyeri', 18)}}的其他基金

Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
  • 批准号:
    2311180
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CAREER: Mapping Problems in Computational Geometry and Topology
职业:计算几何和拓扑中的绘图问题
  • 批准号:
    1941086
  • 财政年份:
    2020
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
AF: Small: Laplace-de Rham Operators in Scientific Computing and Data Analysis
AF:小:科学计算和数据分析中的拉普拉斯-德拉姆算子
  • 批准号:
    1816442
  • 财政年份:
    2018
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant

相似国自然基金

基于前瞻性队列的双酚AF联合果糖加重代谢损伤的靶向代谢组学研究
  • 批准号:
    2025JJ30049
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
U2AF2-circMMP1信号轴促进结直肠癌进展的分子机制研究
  • 批准号:
    2025JJ80723
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
U2AF2精氯酸甲基化调控RNA转录合成在MTAP缺失骨肉瘤T细胞耗竭中的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
BDA-366通过MYD88/NF-κB/PGC1β通路杀伤 KMT2A/AF9 AML细胞的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
Lu AF21934减少缺血性脑卒中导致的神经损伤的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
  • 批准号:
    32372727
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
  • 批准号:
    82304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
  • 批准号:
    82303789
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了