Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
基本信息
- 批准号:2311180
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Shape matching is a computing process that compares data sets based on their interpretation as geometric shapes. Good shape matching methods lead to many useful outcomes including a better understanding of human health, consumer preferences, and patterns in nature. The Frechet distance is often used for shape matching curves describing the movement of people or the shapes of the proteins used as the building blocks of the human body. Its popularity is largely due to its many nice mathematical properties, but there are several issues with its use on real-world data which is often large and messy in nature. Also, the possibilities for expanding its use to settings other than curves are not as well understood. The project seeks to study Frechet distance computing in the presence of messy data. It seeks new methods for computing Frechet distances that can be done quickly even for complicated curves. It also seeks ways to extend the main mathematical ideas behind the Frechet distance to data types other than curves. The project is collaborative and will lead to exchange of knowledge and student training opportunities between the investigators' institutions. It will lead to new shape matching software being made freely available to those who will find it useful.The research activities have three components reflecting the expertise of the project's team of lead researchers. The first component specifically seeks new algorithms for studying messy curve data, focusing on problems designed to address noise and misalignments of the curves' representations. The second component seeks faster and effective approximation algorithms for the Frechet distance and some closely related problems. The third component seeks to apply insights made from work on the first two components to design new algorithms for extensions of the Frechet distance, including a novel interpretation of the so-called discrete Frechet distance in surfaces. Some of the theoretical algorithms designed for this work will be implemented and software made freely available for the general public. The work performed and knowledge gained during the research activities will be used to train new graduate students and offered as course material at the researchers' institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
形状匹配是一种计算过程,它根据数据集的几何形状进行比较。良好的形状匹配方法可以带来许多有用的结果,包括更好地了解人类健康、消费者偏好和自然界的模式。Frechet距离通常用于描述人体运动的形状匹配曲线或用作人体构建块的蛋白质的形状。它的流行很大程度上是由于它的许多很好的数学性质,但是在现实世界的数据中使用它有几个问题,这些数据通常是大而混乱的。此外,将其扩展到曲线以外的设置的可能性还没有得到很好的理解。该项目旨在研究在混乱数据存在下的Frechet距离计算。它寻求计算Frechet距离的新方法,即使对于复杂的曲线也能快速完成。它还寻求将Frechet距离背后的主要数学思想扩展到曲线以外的数据类型的方法。该项目是合作性的,将导致研究机构之间的知识交流和学生培训机会。这将导致新的形状匹配软件被免费提供给那些发现它有用的人。研究活动有三个组成部分,反映了项目首席研究人员团队的专业知识。第一个部分专门寻求研究混乱曲线数据的新算法,重点关注旨在解决曲线表示的噪声和错位的问题。第二部分寻求Frechet距离和一些密切相关问题的更快和有效的逼近算法。第三个部分旨在应用前两个部分的研究成果,设计新的算法来扩展Frechet距离,包括对所谓的曲面离散Frechet距离的新解释。为这项工作设计的一些理论算法将被实现,软件将免费提供给公众。在研究活动中进行的工作和获得的知识将用于培训新的研究生,并作为研究机构的课程材料提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Nayyeri其他文献
Counting and Sampling Minimum Cuts in Genus $$g$$ Graphs
- DOI:
10.1007/s00454-014-9623-4 - 发表时间:
2014-09-03 - 期刊:
- 影响因子:0.600
- 作者:
Erin W. Chambers;Kyle Fox;Amir Nayyeri - 通讯作者:
Amir Nayyeri
ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded Treewidth
用于在有界树宽的单纯复形中查找曲面的 ETH-Tight 算法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mitchell Black;Nello Blaser;Amir Nayyeri;Erlend Raa V - 通讯作者:
Erlend Raa V
Fréchet Edit Distance
Fréchet 编辑距离
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Fox;Amir Nayyeri;Jonathan James Perry;Benjamin Raichel - 通讯作者:
Benjamin Raichel
Amir Nayyeri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Nayyeri', 18)}}的其他基金
CAREER: Mapping Problems in Computational Geometry and Topology
职业:计算几何和拓扑中的绘图问题
- 批准号:
1941086 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
AF: Small: Laplace-de Rham Operators in Scientific Computing and Data Analysis
AF:小:科学计算和数据分析中的拉普拉斯-德拉姆算子
- 批准号:
1816442 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: AF: Measuring similarity between geometric objects
CRII:AF:测量几何对象之间的相似性
- 批准号:
1566624 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant














{{item.name}}会员




