Structure, Colouring, and Flows in Graphs

图表中的结构、颜色和流程

基本信息

  • 批准号:
    1600551
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In discrete mathematics, a graph is a set of points, some of which may be joined by lines. Graphs are useful models for chemical structures, electrical grids, the internet, transportation maps, and many other objects -- anything that can be viewed as a network is, abstractly, a graph. Real world problems involving such networks benefit from the theorems, algorithms, and insight of graph theory. The PI is most interested in graph problems involving structure, coloring, and related notions -- especially problems which connect coloring and structure. This project in particular focuses on four sub-projects involving immersion, edge-coloring, and flows.The first two sub-projects are both motivated by an immersion-analog of Hadwiger's Conjecture (the Abu-Khzam--Langston Conjecture), which links coloring and immersion. One sub-project seeks to find exact structural characterizations of graphs without specific immersions; the other seeks to better understand how immersions (and colorings) are affected when creating new graphs from old. A second conjecture involving coloring and structure that interests the PI greatly is the Goldberg-Seymour Conjecture on chromatic index. The PI plans to work to improve the method of Tashkinov trees -- the dominant technique used for approximation results towards the conjecture. The final sub-project concerns flows, and is somewhat different in flavor (although flows and colorings are certainly related notions). Here, the objects of interest are 3-flows with large support, and the backdrop is Tutte's famous 3-Flow Conjecture.
在离散数学中,图是一组点,其中一些点可以用线连接起来。图形是化学结构、电网、互联网、交通地图和许多其他对象的有用模型--任何可以被视为网络的东西抽象地都是图形。涉及这类网络的现实世界问题得益于图论的定理、算法和洞察力。PI最感兴趣的是涉及结构、着色和相关概念的图形问题--特别是将着色和结构联系起来的问题。这个项目特别关注四个子项目,涉及沉浸、边着色和流动。前两个子项目都是由与Hadwiger猜想(Abu-Khzam-Langston猜想)的沉浸类似而激发的,该猜想将着色和沉浸联系在一起。一个子项目试图找到没有特定沉浸的图形的确切结构特征;另一个子项目寻求更好地理解在从旧的图形创建新图形时沉浸(和着色)是如何受到影响的。第二个涉及着色和结构的猜想引起了PI的极大兴趣,它是关于色指数的Goldberg-Seymour猜想。PI计划改进塔什基诺夫树的方法--这是用于逼近猜想结果的主要技术。最后一个子项目与流有关,在风格上略有不同(尽管流和颜色肯定是相关的概念)。这里,感兴趣的对象是具有大支集的3-流,背景是Tutte著名的3-流猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica McDonald其他文献

Total coloring graphs with large maximum degree
最大度大的总着色图
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aseem Dalal;Jessica McDonald;Songling Shan
  • 通讯作者:
    Songling Shan
On orientations with forbidden out-degrees
关于禁止外度的方向
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Owen Henderschedt;Jessica McDonald
  • 通讯作者:
    Jessica McDonald
The Newfoundland Master Narrative and Michael Crummey’s Galore: An Interpretive Framework
纽芬兰大师叙事和迈克尔·克拉米的丰富:一个解释框架
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kristina Fagan Bidwell;Jessica McDonald
  • 通讯作者:
    Jessica McDonald
3-Flows with large support
  • DOI:
    10.1016/j.jctb.2019.12.006
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matt DeVos;Jessica McDonald;Irene Pivotto;Edita Rollová;Robert Šámal
  • 通讯作者:
    Robert Šámal
“It’s Fine; I’m Fine”: Considerations for Trauma-Informed Healthcare Practices
“很好;我很好”:创伤知情医疗实践的注意事项
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jessica McDonald
  • 通讯作者:
    Jessica McDonald

Jessica McDonald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessica McDonald', 18)}}的其他基金

Conference on Designs, Graphs, and Codes
设计、图表和代码会议
  • 批准号:
    1548285
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
  • 批准号:
    10093708
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Collaborative R&D
Graph Colouring Problems with Restricted Inputs
输入受限的图形着色问题
  • 批准号:
    2867894
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Studentship
Certifying Graph Colouring Algorithms
验证图形着色算法
  • 批准号:
    574676-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
Min-Sum Colouring of Chordal Graphs
弦图的最小和着色
  • 批准号:
    573174-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
COLOURING, DOMINATION AND DISCRETE DYNAMIC GRAPH PROCESSES
着色、控制和离散动态图形过程
  • 批准号:
    RGPIN-2020-07156
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Structural graph theory for colouring algorithms and network reliability
着色算法和网络可靠性的结构图理论
  • 批准号:
    DGECR-2022-00446
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Launch Supplement
Graph Colouring and Local Algorithms
图着色和局部算法
  • 批准号:
    RGPIN-2019-04304
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Structural graph theory for colouring algorithms and network reliability
着色算法和网络可靠性的结构图理论
  • 批准号:
    RGPIN-2022-03697
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Complexity of Colouring Graphs with Forbidden Subgraphs
带有禁止子图的着色图的复杂性
  • 批准号:
    534944-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
COLOURING, DOMINATION AND DISCRETE DYNAMIC GRAPH PROCESSES
着色、控制和离散动态图形过程
  • 批准号:
    RGPIN-2020-07156
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了