Structure, Colouring, and Flows in Graphs
图表中的结构、颜色和流程
基本信息
- 批准号:1600551
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In discrete mathematics, a graph is a set of points, some of which may be joined by lines. Graphs are useful models for chemical structures, electrical grids, the internet, transportation maps, and many other objects -- anything that can be viewed as a network is, abstractly, a graph. Real world problems involving such networks benefit from the theorems, algorithms, and insight of graph theory. The PI is most interested in graph problems involving structure, coloring, and related notions -- especially problems which connect coloring and structure. This project in particular focuses on four sub-projects involving immersion, edge-coloring, and flows.The first two sub-projects are both motivated by an immersion-analog of Hadwiger's Conjecture (the Abu-Khzam--Langston Conjecture), which links coloring and immersion. One sub-project seeks to find exact structural characterizations of graphs without specific immersions; the other seeks to better understand how immersions (and colorings) are affected when creating new graphs from old. A second conjecture involving coloring and structure that interests the PI greatly is the Goldberg-Seymour Conjecture on chromatic index. The PI plans to work to improve the method of Tashkinov trees -- the dominant technique used for approximation results towards the conjecture. The final sub-project concerns flows, and is somewhat different in flavor (although flows and colorings are certainly related notions). Here, the objects of interest are 3-flows with large support, and the backdrop is Tutte's famous 3-Flow Conjecture.
在离散数学中,图是一组点,其中一些点可以用线连接起来。图形是化学结构、电网、互联网、交通地图和许多其他对象的有用模型--任何可以被视为网络的东西抽象地都是图形。涉及这类网络的现实世界问题得益于图论的定理、算法和洞察力。PI最感兴趣的是涉及结构、着色和相关概念的图形问题--特别是将着色和结构联系起来的问题。这个项目特别关注四个子项目,涉及沉浸、边着色和流动。前两个子项目都是由与Hadwiger猜想(Abu-Khzam-Langston猜想)的沉浸类似而激发的,该猜想将着色和沉浸联系在一起。一个子项目试图找到没有特定沉浸的图形的确切结构特征;另一个子项目寻求更好地理解在从旧的图形创建新图形时沉浸(和着色)是如何受到影响的。第二个涉及着色和结构的猜想引起了PI的极大兴趣,它是关于色指数的Goldberg-Seymour猜想。PI计划改进塔什基诺夫树的方法--这是用于逼近猜想结果的主要技术。最后一个子项目与流有关,在风格上略有不同(尽管流和颜色肯定是相关的概念)。这里,感兴趣的对象是具有大支集的3-流,背景是Tutte著名的3-流猜想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica McDonald其他文献
Total coloring graphs with large maximum degree
最大度大的总着色图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aseem Dalal;Jessica McDonald;Songling Shan - 通讯作者:
Songling Shan
On orientations with forbidden out-degrees
关于禁止外度的方向
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Owen Henderschedt;Jessica McDonald - 通讯作者:
Jessica McDonald
The Newfoundland Master Narrative and Michael Crummey’s Galore: An Interpretive Framework
纽芬兰大师叙事和迈克尔·克拉米的丰富:一个解释框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kristina Fagan Bidwell;Jessica McDonald - 通讯作者:
Jessica McDonald
3-Flows with large support
- DOI:
10.1016/j.jctb.2019.12.006 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Matt DeVos;Jessica McDonald;Irene Pivotto;Edita Rollová;Robert Šámal - 通讯作者:
Robert Šámal
“It’s Fine; I’m Fine”: Considerations for Trauma-Informed Healthcare Practices
“很好;我很好”:创伤知情医疗实践的注意事项
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jessica McDonald - 通讯作者:
Jessica McDonald
Jessica McDonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica McDonald', 18)}}的其他基金
Conference on Designs, Graphs, and Codes
设计、图表和代码会议
- 批准号:
1548285 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
- 批准号:
10093708 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Collaborative R&D
Graph Colouring Problems with Restricted Inputs
输入受限的图形着色问题
- 批准号:
2867894 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Studentship
Certifying Graph Colouring Algorithms
验证图形着色算法
- 批准号:
574676-2022 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
Min-Sum Colouring of Chordal Graphs
弦图的最小和着色
- 批准号:
573174-2022 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
COLOURING, DOMINATION AND DISCRETE DYNAMIC GRAPH PROCESSES
着色、控制和离散动态图形过程
- 批准号:
RGPIN-2020-07156 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Structural graph theory for colouring algorithms and network reliability
着色算法和网络可靠性的结构图理论
- 批准号:
DGECR-2022-00446 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Launch Supplement
Graph Colouring and Local Algorithms
图着色和局部算法
- 批准号:
RGPIN-2019-04304 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Structural graph theory for colouring algorithms and network reliability
着色算法和网络可靠性的结构图理论
- 批准号:
RGPIN-2022-03697 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Complexity of Colouring Graphs with Forbidden Subgraphs
带有禁止子图的着色图的复杂性
- 批准号:
534944-2019 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
COLOURING, DOMINATION AND DISCRETE DYNAMIC GRAPH PROCESSES
着色、控制和离散动态图形过程
- 批准号:
RGPIN-2020-07156 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




