Conference on Designs, Graphs, and Codes
设计、图表和代码会议
基本信息
- 批准号:1548285
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Auburn Conference on Designs, Graphs and Codes will be held at Auburn University in Auburn, Alabama, from January 29th to 31st, 2016. The conference will focus on the advancement of research in combinatorics, outreach in mathematics, and the scholarship of teaching and learning, with specific emphasis on graph theory, design theory, and coding theory. The conference will feature both invited and contributed research talks, as well as panel discussions on outreach and the scholarship of teaching and learning, and a problem session. This grant will be used to support travel for participants, especially for students, recent graduates, and traditionally underrepresented groups. More information may be found on the conference website, at https://sites.google.com/site/auburnconferencedgc15/.Design theory, graph theory, and coding theory are subjects at the forefront of modern day combinatorics. The traditional applications of designs reside in constructing statistical experiments, however designs can frequently be used to provide an alternative lens for problems in other areas of combinatorics, especially graph theory. Such graph theoretic problems include decompositions, embeddings, edge-colorings, and amalgamations. Amalgamations, in particular, take a difficult problem with little structure and simplify to a problem that is easier to handle. Coding theory is also connected to graph theory and design theory through mathematical objects like the Fano plane. Coding theory has boundless applications, many of which are related to sending and receiving electronic signals correctly. The interconnectivity of designs, graphs, and codes, strengthens the need to explore these subjects together. Furthermore, growth in the mathematics (and in sciences in general) comes not just from research, but also from outreach and teaching as well. To this end, this conference will draw together for collaboration both researchers in combinatorics and those involved with mathematics outreach and the scholarship of teaching and learning.
奥本设计、图形和代码大会将于2016年1月29日至31日在阿拉巴马州奥本大学举行。会议将集中于组合学研究的进展,数学的推广,以及教学和学习的学术研究,特别是图论,设计理论和编码理论。会议将包括应邀和贡献的研究演讲,以及关于外展和教学学术的小组讨论,以及一个问题会议。这笔赠款将用于资助参与者的旅行,特别是学生、应届毕业生和传统上代表人数较少的群体。更多信息可在会议网站上找到,https://sites.google.com/site/auburnconferencedgc15/.Design理论、图论和编码理论是现代组合数学的前沿学科。设计的传统应用在于构建统计实验,然而设计经常被用来为组合数学的其他领域,特别是图论中的问题提供另一种视角。这样的图论问题包括分解、嵌入、边着色和合并。特别是,合并将一个结构很少的难题简化为一个更容易处理的问题。编码理论还通过Fano平面等数学对象与图论和设计理论联系在一起。编码理论有着无限的应用,其中许多都与正确发送和接收电子信号有关。设计、图表和代码之间的相互联系,加强了共同探索这些主题的必要性。此外,数学(以及整个科学)的增长不仅来自研究,还来自推广和教学。为此,这次会议将吸引组合学研究人员和那些涉及数学推广和教学学术的研究人员进行合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica McDonald其他文献
Total coloring graphs with large maximum degree
最大度大的总着色图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aseem Dalal;Jessica McDonald;Songling Shan - 通讯作者:
Songling Shan
On orientations with forbidden out-degrees
关于禁止外度的方向
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Owen Henderschedt;Jessica McDonald - 通讯作者:
Jessica McDonald
The Newfoundland Master Narrative and Michael Crummey’s Galore: An Interpretive Framework
纽芬兰大师叙事和迈克尔·克拉米的丰富:一个解释框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kristina Fagan Bidwell;Jessica McDonald - 通讯作者:
Jessica McDonald
3-Flows with large support
- DOI:
10.1016/j.jctb.2019.12.006 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Matt DeVos;Jessica McDonald;Irene Pivotto;Edita Rollová;Robert Šámal - 通讯作者:
Robert Šámal
“It’s Fine; I’m Fine”: Considerations for Trauma-Informed Healthcare Practices
“很好;我很好”:创伤知情医疗实践的注意事项
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jessica McDonald - 通讯作者:
Jessica McDonald
Jessica McDonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica McDonald', 18)}}的其他基金
Structure, Colouring, and Flows in Graphs
图表中的结构、颜色和流程
- 批准号:
1600551 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Designs, Graphs, and Networks
组合设计、图形和网络
- 批准号:
RGPIN-2022-03829 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods
基于有限几何和代数方法的有限域上的设计、图形和代码的新构造
- 批准号:
17K14236 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Grants Program - Individual
Designs and Block-Intersection Graphs
设计和块交叉图
- 批准号:
433541-2012 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




