Extremal and Probabilistic Combinatorics with Applications

极值和概率组合学及其应用

基本信息

  • 批准号:
    1600811
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This research project investigates basic combinatorial questions about discrete structures and explores applications of discrete mathematics in computer science, biology, and engineering. The investigators continue their work on extremal graph, set, and hypergraph theory and forbidden configurations. They investigate connections between graph theory and geometry, on the one hand studying Ricci curvature on graphs, on the other hand studying crossing numbers of graphs and related incidence problems. The project will study graph and tree indices originating in chemical graph theory and will apply combinatorial and probabilistic techniques to phylogenetics and to the theory of complex networks. Results of the project will contribute to the better understanding of key phenomena in network science, of discretization of geometric space, of phylogenetics, and of other fields. The investigators will continue the training of Ph.D. students through involvement in the research, introducing them to interdisciplinary and international research collaboration.The project will contribute to the understanding of "optimal" extreme structures and "typical" random structures in discrete mathematics. This area is referred to broadly as extremal combinatorics, and some of the main open questions in the area will be studied, including various instances of the Turan problem for graphs, hypergraphs and posets, problems in combinatorial geometry, in the vein of the Erdos unit distance problem and crossing and incidence problems, and combinatorial questions on trees such as the Maximum Agreement Subtree problem as well as topics related to chemistry. This project will build upon sophisticated methods that have been developed to attack these problems, such as the approach via crossing numbers and incidences, the Guth-Katz low degree polynomial method, and the generalization of the notion of Ricci Curvature from differential geometry to graphs, which allows, to some extent, functional analytic tools to be brought to bear.
本研究计画探讨离散结构的基本组合问题,并探讨离散数学在计算机科学、生物学与工程学上的应用。调查人员继续他们的工作,极值图,集,超图理论和禁止配置。他们调查图论和几何之间的联系,一方面研究Ricci曲率的图形,另一方面研究交叉数的图形和相关的发病率问题。该项目将研究起源于化学图论的图和树指数,并将组合和概率技术应用于遗传学和复杂网络理论。该项目的结果将有助于更好地理解网络科学中的关键现象,几何空间的离散化,遗传学和其他领域。研究者将继续接受博士培训。通过参与研究,向学生介绍跨学科和国际研究合作。该项目将有助于理解离散数学中的“最佳”极端结构和“典型”随机结构。这一领域被广泛地称为极值组合学,将研究该领域的一些主要开放问题,包括图,超图和偏序集的图兰问题的各种实例,组合几何中的问题,鄂尔多斯单位距离问题以及交叉和关联问题,以及关于树的组合问题,如最大一致性子树问题以及与化学有关的主题。该项目将建立在已经开发的复杂方法来解决这些问题,如通过交叉数和发生率的方法,Guth-Katz低次多项式方法,以及从微分几何到图形的Ricci曲率概念的推广,这在一定程度上允许功能分析工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laszlo Szekely其他文献

Epstein-Barr virus-encoded LMP-1 protein upregulates the pNDCF group of nucleoskeleton-cytoskeleton-associated proteins.
Epstein-Barr 病毒编码的 LMP-1 蛋白上调 pNDCF 组核骨架-细胞骨架相关蛋白。
  • DOI:
    10.1099/0022-1317-78-8-2031
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Pokrovskaja;Pankaj Trivedi;George Klein;Laszlo Szekely
  • 通讯作者:
    Laszlo Szekely
Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin- associated nuclear bodies.
人类疱疹病毒 8 编码的 LNA-1 在异染色质相关核体中积累。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Laszlo Szekely;C. Kiss;K. Mattsson;E. Kashuba;K. Pokrovskaja;Attila Juhasz;Pia Holmvall;George Klein
  • 通讯作者:
    George Klein
Changes of Vasoactive and Inflammatory Factors, Myocardial Injury Markers During and After Cardiopulmonary Bypass and Off-Pump Surgery
  • DOI:
    10.1378/chest.124.4_meetingabstracts.104s
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laszlo Szekely;Zita Sikos;Beata Soltesz;Matyas Keltai;Ferenc Horkay
  • 通讯作者:
    Ferenc Horkay
Publisher Correction to: Direct contact between Plasmodium falciparum and human B-cells in a novel co-culture increases parasite growth and affects B-cell growth
  • DOI:
    10.1186/s12936-021-03853-5
  • 发表时间:
    2021-07-23
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Sreenivasulu B. Reddy;Noemi Nagy;Caroline Rönnberg;Francesca Chiodi;Allan Lugaajju;Frank Heuts;Laszlo Szekely;Mats Wahlgren;Kristina E. M. Persson
  • 通讯作者:
    Kristina E. M. Persson
Outcomes after fractional flow reserve-guided percutaneous coronary intervention versus coronary artery bypass grafting (FAME 3): 5-year follow-up of a multicentre, open-label, randomised trial
血流储备分数指导的经皮冠状动脉介入治疗与冠状动脉旁路移植术的疗效对比(FAME 3):一项多中心、开放标签、随机试验的5年随访结果
  • DOI:
    10.1016/s0140-6736(25)00505-7
  • 发表时间:
    2025-04-26
  • 期刊:
  • 影响因子:
    88.500
  • 作者:
    William F Fearon;Frederik M Zimmermann;Victoria Y Ding;Kuniaki Takahashi;Zsolt Piroth;Albert H M van Straten;Laszlo Szekely;Giedrius Davidavičius;Gintaras Kalinauskas;Samer Mansour;Rajesh Kharbanda;Nikolaos Östlund-Papadogeorgos;Adel Aminian;Keith G Oldroyd;Nawwar Al-Attar;Nikola Jagic;Jan-Henk E Dambrink;Petr Kala;Oskar Angerås;Philip MacCarthy;Bernard De Bruyne
  • 通讯作者:
    Bernard De Bruyne

Laszlo Szekely的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laszlo Szekely', 18)}}的其他基金

CBMS Conference: Additive Combinatorics from a Geometric Viewpoint
CBMS 会议:几何角度的加性组合学
  • 批准号:
    1743625
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Extremal and Probabilistic Combinatorics with Applications
极值和概率组合学及其应用
  • 批准号:
    1300547
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Extremal and Probabilistic Combinatorics II
极值和概率组合学 II
  • 批准号:
    1000475
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Extremal and probabilistic combinatorics
极值和概率组合学
  • 批准号:
    0701111
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    2246907
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
  • 批准号:
    2146406
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Extremal and Probabilistic Combinatorics
极值和概率组合学
  • 批准号:
    2763343
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    2100157
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
  • 批准号:
    20K11668
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    1953772
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Extremal Combinatorics, Probabilistic Combinatorics
极值组合学、概率组合学
  • 批准号:
    2281342
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Extremal and probabilistic combinatorics
极值和概率组合学
  • 批准号:
    2140269
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Topics in Extremal and Probabilistic Combinatorics via the study of uniform probability spaces with weak dependencies
通过研究具有弱依赖性的均匀概率空间来研究极值和概率组合学主题
  • 批准号:
    1810272
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    1600742
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了