CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
基本信息
- 批准号:2146406
- 负责人:
- 金额:$ 43.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). In this project the PI will study various topics in extremal and probabilistic combinatorics, two areas which have grown significantly in both depth and breadth in the 21st century, resulting in methods that apply well beyond their original settings. These include applications, and many significant breakthroughs, in number theory, group theory, probability theory, information theory, and theoretical computer science. The approaches and techniques resulting from this project will have a significant impact on the development of these areas and will also be applicable in other branches of mathematics and theoretical computer science. This project is also designed for training undergraduate and graduate students.The problems the PI intends to study are fundamental and belong to some of the most actively studied topics of current research in extremal and probabilistic combinatorics. The first set of questions is coming from the sub-area of Ramsey theory and includes several classical questions on Ramsey numbers, spectral Ramsey theory, the clique number of Cayley graphs, Ramsey properties of random graphs, and more. The second set of questions is related to perfect matchings in (hyper)graphs. In particular, the PI will study fundamental problems such as: finding the Dirac threshold for the existence of a perfect matching, finding/counting 1-factorizations in (pseudo)random hypergraphs, decomposing the edges of d-regular (pseudo)random d-regular hypergraphs into perfect matchings, etc. Furthermore, the PI intends to study other interesting problems such as: finding the smallest number of (linear) bases over a finite field whose union forms an additive base, extremal problems in k-majority tournaments, counting Hadamard matrices, and more. Common themes run through these areas, and the methods developed in one area are likely to have implications for the others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。在这个项目中,PI将研究极值和概率组合学中的各种主题,这两个领域在21世纪的深度和广度上都有了显着的增长,从而产生了远远超出其原始设置的方法。这些包括应用,和许多重大突破,在数论,群论,概率论,信息论和理论计算机科学。该项目产生的方法和技术将对这些领域的发展产生重大影响,也将适用于数学和理论计算机科学的其他分支。该项目也是为培训本科生和研究生而设计的。PI打算研究的问题是基础性的,属于当前极值和概率组合学研究中最活跃的一些研究主题。第一组问题来自Ramsey理论的子领域,包括Ramsey数,谱Ramsey理论,Cayley图的团数,随机图的Ramsey性质等几个经典问题。第二组问题与(超)图中的完美匹配有关。特别是,PI将研究基本问题,如:找到完美匹配存在的狄拉克阈值,在(伪)随机超图中找到/计数1-因子分解,将d-正则(伪)随机d-正则超图的边分解为完美匹配等。寻找有限域上的最小数量的(线性)基,其联合形成一个加法基,k-多数竞赛中的极值问题,计数Hadamard矩阵等等。共同的主题贯穿于这些领域,在一个领域开发的方法可能会对其他领域产生影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asaf Ferber其他文献
Rainbow Hamilton cycles in random graphs and hypergraphs
随机图和超图中的彩虹汉密尔顿循环
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Asaf Ferber;Michael Krivelevich - 通讯作者:
Michael Krivelevich
Packing trees of unbounded degrees in random graphs
在随机图中包装无界度的树
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Asaf Ferber;Wojciech Samotij - 通讯作者:
Wojciech Samotij
Resilience of the rank of random matrices
随机矩阵的秩的弹性
- DOI:
10.1017/s0963548320000413 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Asaf Ferber;K. Luh;Gweneth McKinley - 通讯作者:
Gweneth McKinley
On a Conjecture of Thomassen
论托马森猜想
- DOI:
10.37236/4762 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Michelle Delcourt;Asaf Ferber - 通讯作者:
Asaf Ferber
Avoider-Enforcer games played on edge disjoint hypergraphs
在边不相交超图上进行的回避者-执行者博弈
- DOI:
10.1016/j.disc.2013.09.008 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Asaf Ferber;Michael Krivelevich;A. Naor - 通讯作者:
A. Naor
Asaf Ferber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asaf Ferber', 18)}}的其他基金
NSF-BSF: Extremal and Probablisitic Combinatorics
NSF-BSF:极值和概率组合学
- 批准号:
1953799 - 财政年份:2020
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
The Probabilistic Method in Combinatorics
组合学中的概率方法
- 批准号:
1954395 - 财政年份:2019
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
The Probabilistic Method in Combinatorics
组合学中的概率方法
- 批准号:
1700338 - 财政年份:2017
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
相似海外基金
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300347 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300346 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Extremal Combinatorics: Problems and Algorithmic Aspects
极值组合学:问题和算法方面
- 批准号:
2154082 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
Extremal problems in geometry
几何中的极值问题
- 批准号:
RGPIN-2022-03649 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Discovery Grants Program - Individual
Isoperimetric Clusters and Related Extremal Problems with Applications in Probability
等周簇和相关极值问题及其在概率中的应用
- 批准号:
2204449 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Problems in Extremal Combinatorics with Applications to Statistical Physics
极值组合问题及其在统计物理中的应用
- 批准号:
574977-2022 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
University Undergraduate Student Research Awards
Problems in Extremal and Geometric Combinatorics
极值和几何组合问题
- 批准号:
2154063 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant