Unique Functionals and Quantum Groups
独特的泛函和量子群
基本信息
- 批准号:1601026
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a research project at the interface of number theory, representation theory, and theoretical physics. Recent work of the investigator and collaborators has shown that certain matrices, known as R-matrices, that arise in theoretical physics in the study of statistical mechanics and phase transitions also arise in the study of a class of functions, known as Whittaker functions, that encode arithmetic information when these functions are viewed representation-theoretically, that is, when inherent algebraic symmetries are taken into account. This discovery opens the door to a rich collection of questions that will be explored in this project. It is anticipated that in the process, important new connections between number theory and mathematical physics will be developed.In more detail, Whittaker functions on p-adic groups are a fundamental tool in automorphic forms. Whittaker functions on metaplectic covers of these groups are less well-understood, but the corresponding matrices on intertwining operators have been computed. The investigator and collaborators have shown that these matrices for the n-fold mataplectic cover of GL(n) agree with the R-matrices for a quantum group, which is a Drinfield twist of the quantized enveloping algebra of the affinized Lie superalgebra gl(1/n). The effect of the Drinfield twisting is to introduce Gauss sums into the R-matrix, and therefore to make it "number-theoretic." This clarifies a great deal, but also presents new questions that will be explored in this project. A separate but related project that will be pursued is an on-going study of connections between unique models and representations of Hecke algebras.
这是一项介于数论、表象理论和理论物理之间的研究项目。研究人员和合作者最近的工作表明,在统计力学和相变研究的理论物理中出现的某些矩阵,称为R-矩阵,也出现在一类称为惠特克函数的函数的研究中,当这些函数被视为表示时,即在理论上,当考虑到固有的代数对称性时,该函数编码算术信息。这一发现开启了丰富的问题集合的大门,这些问题将在本项目中探索。预计在这个过程中,数论和数学物理之间的重要新联系将会得到发展。更详细地说,p-进群上的Whittaker函数是自同构形式的基本工具。关于这些群的亚辛覆盖上的Whittaker函数还不是很清楚,但已经计算了相应的交织算子上的矩阵。研究人员和合作者证明了GL(N)的n重矩阵覆盖的这些矩阵与一个量子群的R-矩阵一致,该R-矩阵是仿射Lie超代数gl(1/n)的量子化包络代数的Drinfield扭曲。Drinfield扭曲的效果是将高斯和引入R-矩阵,从而使其成为“数论”。这在很大程度上澄清了问题,但也提出了将在该项目中探索的新问题。另一个单独但相关的项目是正在进行的关于唯一模型和Hecke代数表示之间的联系的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bump其他文献
On the cubic Shimura lift for PGL3
- DOI:
10.1007/bf02784158 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Daniel Bump;Solomon Friedberg;David Ginzburg - 通讯作者:
David Ginzburg
An L-Function of Degree 27 for Spin9
- DOI:
10.1023/a:1026274524057 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Daniel Bump;David Ginzburg - 通讯作者:
David Ginzburg
Compact Operators
- DOI:
10.1007/978-1-4614-8024-2_3 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Daniel Bump - 通讯作者:
Daniel Bump
Colored vertex models and Iwahori Whittaker functions
- DOI:
10.1007/s00029-024-00950-6 - 发表时间:
2024-09-06 - 期刊:
- 影响因子:1.200
- 作者:
Ben Brubaker;Valentin Buciumas;Daniel Bump;Henrik P. A. Gustafsson - 通讯作者:
Henrik P. A. Gustafsson
Casselman's Basis of Iwahori vetors and the Bruhat Order
卡塞尔曼的 Iwahori vetors 基础和 Bruhat Order
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Daniel Bump;Maki Nakasuji - 通讯作者:
Maki Nakasuji
Daniel Bump的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bump', 18)}}的其他基金
Conference Proposal: Automorphic Forms on Reductive Groups and Their Covers
会议提案:还原群的自守形式及其覆盖
- 批准号:
1802887 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: Sage-Combinat: Developing and Sharing Open Source Software for Algebraic Combinatorics
合作研究:SI2-SSE:Sage-Combinat:开发和共享代数组合开源软件
- 批准号:
1147463 - 财政年份:2012
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Metaplectic Whittaker functions and quantum groups
Metaplectic Whittaker 函数和量子群
- 批准号:
1001079 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652817 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
- 批准号:
0354662 - 财政年份:2004
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Constructions of L-functions, Eigenvalue Bounds and Statistics
L 函数、特征值界和统计的构造
- 批准号:
9970841 - 财政年份:1999
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
The Rankin-Selberg Method, Zeros of Special Functions and Models of Representations Over Finite Fields
Rankin-Selberg 方法、特殊函数的零点和有限域上的表示模型
- 批准号:
9622819 - 财政年份:1996
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Mathematical Sciences: New Models in the Rankin-Selberg Method and Uses of the Metaplectic Group
数学科学:Rankin-Selberg 方法的新模型和 Metaplectic 群的使用
- 批准号:
9023441 - 财政年份:1991
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Mathematical Sciences: Eisenstein Series on the Metaplectic Group, Special Values of Automorphic L-Functions and Functional Equations
数学科学:爱森斯坦超变群系列、自同构 L 函数和函数方程的特殊值
- 批准号:
8902070 - 财政年份:1989
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
相似海外基金
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
- 批准号:
23K03120 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Research Grant
The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
- 批准号:
EP/X017109/1 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Research Grant
The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
- 批准号:
EP/X017206/1 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Quantum Computing based density functionals for fast and accurate materials and chemistry simulations
基于量子计算的密度泛函,用于快速、准确的材料和化学模拟
- 批准号:
10074167 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Feasibility Studies
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/1 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




